[2] R. Colpi and C. Menini:
On the structure of $\ast $-modules. J. Algebra 158 (1993), 400–419.
MR 1226797
[4] P. C. Eklof, K. R. Goodearl and J. Trlifaj:
Dually slender modules and steady rings. Forum Math. 9 (1997), 61–74.
MR 1426454
[5] P. C. Eklof and A. H. Mekler:
Almost Free Modules. North-Holland, New York, 1990.
MR 1055083
[6] R. El Bashir and T. Kepka:
Modules commuting (via $\mathop {\mathrm Hom}\nolimits $) with some limits. Fund. Math. 155 (1998), 271–292.
MR 1607449
[8] L. Fuchs and L. Salce:
Modules over Valuation Domains. Marcel Dekker, New York, 1985.
MR 0786121
[9] A. Gollová: $\sum $-compact modules and steady rings. Ph.D. Thesis, Charles University, Prague, 1997.
[10] J. L. Gómez Pardo, G. Militaru and C. Nǎstǎsescu:
When is ${\mathrm HOM}_R(M,-)$ equal to ${\mathrm Hom}_R(M,-)$ in the category $R-{\mathrm gr}$? Comm. Algebra 22 (1994), 3171–3181.
MR 1272380
[12] T. Kepka:
$\cap $-compact modules. Comment. Math. Univ. Carolin. 36 (1995), 423–426.
MR 1364481
[13] H. Lenzing:
Endlichpräsentierbare Moduln. Arch. Math. 20 (1969), 262–266.
MR 0244322
[14] C. Menini and A. Orsatti:
Representable equivalences between categories of modules and applications. Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231.
MR 1049594
[16] A. Orsatti and N. Rodinò:
On the endomorphism ring of an infinite dimensional vector space. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 395–417.
MR 1378215
[17] R. Rentschler: Die Vertauschbarkeit des $\mathop {\mathrm Hom}\nolimits $-Funktors mit direkten Summen. Dissertation, Ludwig-Maximilian-Universität, München, 1967.
[18] R. Rentschler:
Sur les modules $M$ tels que $\mathop {\mathrm Hom}\nolimits (M,-)$ commute avec les sommes directes. C. R. Acad. Sci. Paris 268 (1969), 930–932.
MR 0241466
[19] P. Růžička, J. Trlifaj and J. Žemlička:
Criteria for steadiness. Proc. Conf. Abelian Groups, Module Theory and Topology (Padova 1997), Marcel Dekker, New York, 1998, pp. 359–371.
MR 1651181
[20] J. Trlifaj:
Every $\ast $-module is finitely generated. J. Algebra 164 (1994), 392–398.
MR 1297156
[21] J. Trlifaj:
Steady rings may contain large sets of orthogonal idempotents. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473.
MR 1378220 |
Zbl 0845.16009
[22] J. Trlifaj:
Modules over non-perfect rings. Advances in Algebra and Model Theory, Gordon and Breach, Philadelphia, 1996, pp. 471–492.
MR 1687740
[24] J. Žemlička and J. Trlifaj:
Steady ideals and rings. Rend. Sem. Mat. Univ. Padova 98 (1997), .
MR 1492975
[25] J. Žemlička: Structure of steady rings. Ph.D. Thesis, Charles University, Prague, 1998.