Previous |  Up |  Next

Article

Keywords:
cyclic semigroup; ordered semigroup; lattice order; idempotent element; subidempotent; superidempotent elements
Summary:
This paper recalls some properties of a cyclic semigroup and examines cyclic subsemigroups in a finite ordered semigroup. We prove that a partially ordered cyclic semigroup has a spiral structure which leads to a separation of three classes of such semigroups. The cardinality of the order relation is also estimated. Some results concern semigroups with a lattice order.
References:
[1] G.  Birkhoff: Lattice Theory. AMS Coll. Publ. 25, Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] E. Czogala and J.  Drewniak: Associative monotonic operations in fuzzy set theory. Fuzzy Sets Syst. 12 (1984), 249–269. MR 0740097
[3] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[4] J. M.  Howie: An Introduction to Semigroup Theory. Acad. Press, London, 1976. MR 0466355 | Zbl 0355.20056
[5] J.-X.  Li: Periodicity of powers of fuzzy matrices (finite fuzzy relations). Fuzzy Sets Syst. 48 (1992), 365–369. MR 1178176 | Zbl 0760.15012
[6] L.  Redei: Algebra. Pergamon Press, Oxford, 1967. MR 0211820 | Zbl 0191.00502
[7] Š.  Schwarz: On the semigroup of binary relations on a finite set. Czechoslovak Math.  J. 20 (1970), 632–679. MR 0296190 | Zbl 0228.20034
[8] Š.  Schwarz: On idempotent relations on a finite set. Czechoslovak Math.  J. 20 (1970), 696–714. MR 0268047
[9] M. G.  Thomasom: Convergence of powers of a fuzzy matrix. J.  Math. Anal. Appl. 57 (1977), 476–480. DOI 10.1016/0022-247X(77)90274-8 | MR 0427342
[10] M.  Yoeli: A note on a generalization of Boolean matrix theory. Amer. Math. Monthly 68 (1961), 552–557. DOI 10.2307/2311149 | MR 0126472 | Zbl 0115.02103
Partner of
EuDML logo