Article
Keywords:
hyperbolic differential inclusions; fixed point; solution set
Summary:
We consider a class of nonconvex and nonclosed hyperbolic differential inclusions and we prove the arcwise connectedness of the solution set.
References:
[1] F. S. De Blasi and J. Myjak:
On the set of solutions of a differential inclusion. Bull. Inst. Math. Acad. Sinica 14 (1986), 271–275.
MR 0866561
[2] F. S. De Blasi and J. Myjak:
On the structure of the set of solutions of the Darboux problem of hyperbolic equations. Proc. Edinburgh Math. Soc. 29 (1986), 7–14.
MR 0829175
[3] F. S. De Blasi, G. Pianigiani and V. Staicu:
On the solution sets of some nonconvex hyperbolic differential inclusions. Czechoslovak Math. J. 45 (1995), 107–116.
MR 1314533
[4] L. Gorniewicz and T. Pruszko:
On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 38 (1980), 279–285.
MR 0620202
[5] S. Marano:
Generalized solutions of partial differential inclusions depending on a parameter. Rend. Accad. Naz. Sci. Mem. Mat. 107 (1989), 281–295.
MR 1041756 |
Zbl 0702.35168
[6] S. Marano:
Fixed points of multivalued contractions with nonclosed, nonconvex values. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 5 (1994), 203–212.
MR 1298263 |
Zbl 0862.54040
[7] S. Marano and V. Staicu:
On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 76 (1997), 287–301.
DOI 10.1023/A:1006533606338 |
MR 1459237
[8] S. Marano and V. Staicu:
Correction to the paper On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 78 (1998), 267–268.
DOI 10.1023/A:1006539007972 |
MR 1604707
[9] V. Staicu:
On a non-convex hyperbolic differential inclusion. Proc. Edinburgh Math. Soc. 35 (1992), 375–382.
MR 1187000 |
Zbl 0769.34018
[10] G. Teodoru:
A characterization of the solutions of the Darboux problem for the equation $u_{xy}\in F(x,y,u)$. An. Stiint. Univ. Al. I. Cuza Iasi Mat. 33 (1987), 33–38.
MR 0925687