Previous |  Up |  Next

Article

Keywords:
Stiefel-Whitney class; flag manifold; span; fibre bundle
References:
[1] A.  Borel: La cohomologie $\mathop {\mathrm mod} 2$ de certains espaces homogénes. Comment. Math. Helvetici 27 (1953), 165–197. DOI 10.1007/BF02564561 | MR 0057541
[2] J. Korbaš: Vector fields on real flag manifolds. Ann. Global Anal. Geom. 3 (1985), 173–184. DOI 10.1007/BF01000338 | MR 0809636
[3] J. Korbaš: Some partial formulae for Stiefel-Whitney classes of Grassmannians. Czechoslovak Math.  J. 36 (111) (1986), 535–540. MR 0863185
[4] J. Korbaš: Note on Stiefel-Whitney classes of flag manifolds. Rend. Circ. Mat. Palermo 2 (Suppl.  16) (1987), 109–111. MR 0946716
[5] J. Korbaš and P. Zvengrowski: The vector field problem: A survey with emphasis on specific manifolds. Expo. Math. 12 (1994), 1–30. MR 1267626
[6] K. Y.  Lam: A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Amer. Math. Soc. 213 (1975), 305–314. DOI 10.1090/S0002-9947-1975-0431194-X | MR 0431194 | Zbl 0312.55020
[7] J. Milnor and J. Stasheff: Characteristic Classes. Annals of Mathematics Studies vol. 76, Princeton Univ. Press, Princeton, 1974. MR 0440554
[8] E.  Thomas: On tensor products of $n$-plane bundles. Arch. Math. (Basel) X (1959), 174–179. DOI 10.1007/BF01240783 | MR 0107234 | Zbl 0192.29501
[9] E. Thomas: Vector fields on manifolds. Bull. Amer. Math. Soc. 75 (1969), 643–683. DOI 10.1090/S0002-9904-1969-12240-8 | MR 0242189 | Zbl 0183.51703
Partner of
EuDML logo