Article
Keywords:
Bochner integral; strong McShane integral
Summary:
The classical Bochner integral is compared with the McShane concept of integration based on Riemann type integral sums. It turns out that the Bochner integrable functions form a proper subclass of the set of functions which are McShane integrable provided the Banach space to which the values of functions belong is infinite-dimensional. The Bochner integrable functions are characterized by using gauge techniques. The situation is different in the case of finite-dimensional valued vector functions.
References:
[1] A. Dvoretzky and C. A. Rogers:
Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. USA 36 (1950), 192–197.
DOI 10.1073/pnas.36.3.192 |
MR 0033975
[5] J. Kurzweil:
Nichtabsolut Konvergente Integrale. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980.
MR 0597703 |
Zbl 0441.28001
[8] V. A. Skvortsov and A. P. Solodov:
A variational integral for Banach-valued functions. Real Anal. Exchange 24 (1998/99), 799–806.
MR 1704751