Previous |  Up |  Next

Article

Keywords:
Bochner integral; strong McShane integral
Summary:
The classical Bochner integral is compared with the McShane concept of integration based on Riemann type integral sums. It turns out that the Bochner integrable functions form a proper subclass of the set of functions which are McShane integrable provided the Banach space to which the values of functions belong is infinite-dimensional. The Bochner integrable functions are characterized by using gauge techniques. The situation is different in the case of finite-dimensional valued vector functions.
References:
[1] A. Dvoretzky and C. A.  Rogers: Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. USA 36 (1950), 192–197. DOI 10.1073/pnas.36.3.192 | MR 0033975
[2] R. Gordon: The McShane integral of Banach-valued functions. Illinois J.  Math. 34 (1990), 557–567. DOI 10.1215/ijm/1255988170 | MR 1053562 | Zbl 0685.28003
[3] R. Gordon: Riemann integration in Banach spaces. Rocky Mountain J.  Math. 21 (1991), 923–949. DOI 10.1216/rmjm/1181072923 | MR 1138145 | Zbl 0764.28008
[4] R. Henstock: Lectures on the Theory of Integration. World Scientific, Singapore, 1988. MR 0963249 | Zbl 0668.28001
[5] J. Kurzweil: Nichtabsolut Konvergente Integrale. BSB B. G.  Teubner Verlagsgesellschaft, Leipzig, 1980. MR 0597703 | Zbl 0441.28001
[6] S. Lang: Real and Functional Analysis. Springer-Verlag, New York, 1993. MR 1216137 | Zbl 0831.46001
[7] Š. Schwabik: Abstract Bochner and McShane integrals. Ann. Math. Sil. 10 (1996), 21–56. MR 1399609 | Zbl 0868.28005
[8] V. A. Skvortsov and A. P. Solodov: A variational integral for Banach-valued functions. Real Anal. Exchange 24 (1998/99), 799–806. MR 1704751
[9] P.-Y. Lee: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. MR 1050957 | Zbl 0699.26004
Partner of
EuDML logo