[1] E. Alòs and D. Nualart: Stochastic calculus with respect to the fractional Brownian motion. Preprint.
[2] E. Alòs, O. Mazet and D. Nualart:
Stochastic calculus with respect to Gaussian processes. (to appear).
MR 1849177
[3] J. Bell and D. Marcus:
Vorticity intensification and the transition to turbulence in the three-dimensional Euler equation. Comm. Math. Phys. 147 (1992), 371–394.
DOI 10.1007/BF02096593 |
MR 1174419
[5] H. Bessaih: Mean field theory for 3-D vortex filaments. In preparation.
[8] A. Colesanti and M. Romito: Some remarks on a probabilistic model of the vorticity field of a 3D fluid. Preprint.
[9] F. Flandoli:
On a probabilistic description of small scale structures in 3D fluids. (to appear).
MR 1899111 |
Zbl 1017.76074
[10] F. Flandoli and M. Gubinelli:
The Gibbs ensamble of a vortex filament. (to appear).
MR 1892850
[13] A. N. Kolmogorov:
The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. (Dokl.) Acad. Sci. USSR (N.S.) 30 (1941), 299–303.
MR 1124922
[14] N. S. Landkof:
Foundations of Modern Potential Theory. Springer-Verlag, New York, 1972.
MR 0350027 |
Zbl 0253.31001
[16] C. Marchioro, M. Pulvirenti:
Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, Berlin, 1994.
MR 1245492
[17] I. Minelli: In preparation.
[18] D. Nualart, C. Rovira and S. Tindel: Probabilistic models for vortex filaments based on fractional Brownian motion. In preparation.
[20] Z. S. She, E. Jackson and S. A. Orszag:
Structure and dynamics of homogeneous turbulence: models and simulations. Proc. Roy. Soc. Lond. Ser. A 434 (1991), 101–124.
DOI 10.1098/rspa.1991.0083
[22] A. Vincent and M. Meneguzzi:
The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225 (1991), 1–25.
DOI 10.1017/S0022112091001957
[25] M. Zähle:
Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 (1998), 333–374.
DOI 10.1007/s004400050171 |
MR 1640795