About DML-CZ
|
FAQ
|
Conditions of Use
|
Math Archives
|
Contact Us
Previous
|
Up
|
Next
DML-CZ Home
Czechoslovak Mathematical Journal
Volume 51
Issue 1
Article
Redfield, R. H.
Subfields of lattice-ordered fields that mimic maximal totally ordered subfields
.
(English).
Czechoslovak Mathematical Journal
,
vol. 51 (2001), issue 1
,
pp. 143-161
MSC:
06F25
,
12J15
|
MR 1814640
|
Zbl 1079.12005
Full entry
|
PDF
(0.4 MB)
Feedback
Similar articles:
References:
[1] P. Conrad and J. E. Diem:
The ring of polar preserving endomorphisms of an Abelian lattice-ordered group
. Illinois J. Math. 15 (1971), 222–240.
DOI 10.1215/ijm/1256052710
|
MR 0285462
[2] L. Fuchs:
Partially Ordered Algebraic Systems
. Pergamon Press, Oxford, 1963.
MR 0171864
|
Zbl 0137.02001
[3] R. H. Redfield:
Constructing lattice-ordered fields and division rings
. Bull. Austral. Math. Soc. 40 (1989), 365–369.
DOI 10.1017/S0004972700017391
|
MR 1037630
|
Zbl 0683.12015
[4] R. H. Redfield:
Lattice-ordered fields as convolution algebras
. J. Algebra 153 (1992), 319–356.
DOI 10.1016/0021-8693(92)90158-I
|
MR 1198204
|
Zbl 0785.06012
[5] R. H. Redfield:
Lattice-ordered power series fields
. J. Austral. Math. Soc. (Series A) 52 (1992), 299–321.
DOI 10.1017/S1446788700035047
|
MR 1151288
|
Zbl 0766.06019
[6] P. Ribenboim:
Noetherian rings of generalized power series
. J. Pure Appl. Algebra 79 (1992), 293–312.
DOI 10.1016/0022-4049(92)90056-L
|
MR 1167578
|
Zbl 0761.13007
[7] N. Schwartz:
Lattice-ordered fields
. Order 3 (1986), 179–194.
DOI 10.1007/BF00390108
|
MR 0865462
|
Zbl 0603.06009
[8] S. A. Steinberg:
Personal communication
. (1990).
[9] R. R. Wilson:
Lattice orderings on the real field
. Pacific J. Math. 63 (1976), 571–577.
DOI 10.2140/pjm.1976.63.571
|
MR 0406986
|
Zbl 0297.12101
Search
Search
This Collection
Advanced Search
Browse
Collections
Titles
Authors
MSC
About DML-CZ
Partner of