[Ai] T. Aiki:
The existence of solutions to two-phase Stefan problems for nonlinear parabolic equations. Control Cyb. 19 (1990), 41–62.
MR 1166228
[Ai(blow)] T. Aiki:
Behavior of free boundaries blow-up solutions to one-phase Stefan problems. Nonlinear Anal. TMA. 26 (1996), 707–723.
MR 1362745
[Ai-Ima] T. Aiki and H. Imai:
Behavior of blow-up solutions to one-phase Stefan problems with Dirichlet boundary conditions. Preprint.
MR 1462965
[Ai-Ima(G)] T. Aiki and H. Imai: Global existence of solutions to one-phase Stefan problems for semilinear parabolic equations. Tech. Rep. Math. Sci., Chiba Univ. 11(11) (1995).
[Ai-Ke] T. Aiki and N. Kenmochi: Behavior of solutions to two-phase Stefan problems for nonlinear parabolic equations. Bull. Fac. Education, Chiba Univ. 39 (1991), 15–62.
[Ai-Ima(IFIP)] T. Aiki and H. Imai:
Blow-up points to one phase Stefan problems with Dirichlet boundary conditions. Modelling and Optimization of Distributed Parameter Systems, Chapman & Hall, 1996, pp. 83–89.
MR 1388520
[FP] A. Fasano and M. Primicerio:
Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions. J. Math. Anal. Appl. 72 (1979), 247–273.
DOI 10.1016/0022-247X(79)90287-7 |
MR 0552335
[Ke] N. Kenmochi:
A new proof of the uniqueness of solutions to two-phase Stefan problems for nonlinear parabolic equations. Free boundary value problems, Proc. Conf., ISNM 95, Birkhäuser, Basel, 1990, pp. 101–126.
MR 1111025 |
Zbl 0738.35101
[Ke(SPG)] N. Kenmochi:
Global existence of solutions of two-phase Stefan problems with nonlinear flux conditions described by time-dependent subdifferentials. Control Cyb. 19 (1990), 7–39.
MR 1166227 |
Zbl 0754.35191
[LSU] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva:
Linear and Quasi-Linear Equations of Parabolic Type. Transl. Math. Monograph 23, Amer. Math. Soc., Providence R. I., 1968.
DOI 10.1090/mmono/023/08 |
MR 0241821