Previous |  Up |  Next

Article

Keywords:
higher order difference equation; oscillation
Summary:
The asymptotic and oscillatory behavior of solutions of mth order damped nonlinear difference equation of the form \[ \Delta (a_n \Delta ^{m-1} y_n) + p_n \Delta ^{m-1} y_n + q_n f(y_{\sigma (n+m-1)}) = 0 \] where $m$ is even, is studied. Examples are included to illustrate the results.
References:
[1] R.P. Agarwal: Difference Equations and Inequalities. Marcel Dekker, New York, 1992. MR 1155840 | Zbl 0925.39001
[2] R.P. Agarwal: Properties of solutions of higher order nonlinear difference equations I. An. Univ. AI.I. Cuza. Iasi. 31 (1985), 165–172. MR 0858057 | Zbl 0599.39001
[3] R.P. Agarwal: Properties of solutions of higher order nonlinear difference equations II. An. Univ. AI.I. Cuza. Iasi 29 (1983), 85–96. MR 0739573 | Zbl 0599.39002
[4] S.R. Grace and B.S. Lalli: Oscillation theorems for $n$-th order delay differential equations. J. Math. Anal. Appl. 91 (1983), 342–366. MR 0690876
[5] S.R. Grace and B.S. Lalli: Oscillation theorems for damped differential equations of even order with deviating arguments. SIAM. J. Math. Anal. 15 (1984), 308–316. DOI 10.1137/0515024 | MR 0731869
[6] J.W. Hooker and W.T. Patula: A second order nonlinear difference equation: Oscillation and asymptotic behavior. J. Math. Anal. Appl. 91 (1983), 9–29. DOI 10.1016/0022-247X(83)90088-4 | MR 0688528
[7] M.R.S. Kulenovic and M. Budincevic: Asymptotic analysis of nonlinear second order difference equations. Anal. Sti. Univ. Iasi. 30 (1984), 39–52. MR 0800139
[8] V. Lakshmikantham and D. Trigiante: Theory of Difference Equations: Numerical Methods and Applications. Academic Press, New York, 1988. MR 0939611
[9] J. Popenda: Oscillation and nonoscillation theorems for second order difference equations. J. Math. Anal. Appl. 123 (1987), 34–38. DOI 10.1016/0022-247X(87)90291-5 | MR 0881528 | Zbl 0612.39002
[10] E. Thandapani: Asymptotic and oscillatory behavior of solutions of nonlinear second order difference equations. Indian. J. Pure. Appl. Math. 24 (1993), 365–372. MR 1229844 | Zbl 0784.39003
[11] E. Thandapani: Oscillation theorems for second order damped nonlinear difference equations. Czechoslovak Math. J. 45(120) (1995), 327–335. MR 1331469 | Zbl 0838.39003
[12] E. Thandapani, P. Sundaram and B.S. Lalli: Oscillation theorems for higher order nonlinear delay difference equations. Computers Math. Applic. 32 (1996), 111–117. DOI 10.1016/0898-1221(96)00116-2 | MR 1398552
[13] E. Thandapani, P. Sundaram, J.R. Graef, A. Miciano and P.W. Spikes: Classification of nonoscillatory solutions of higher order neutral type difference equations. Arch. Math. (Brno) 31 (1995), 263–277. MR 1390585
[14] E. Thandapani and P. Sundaram: Oscillation theorems for some even order nonlinear difference equations. J. Nonlinear Diff. Eqn. 4 (1996) (to appear).
[15] P.J.Y. Wong and R.P. Agarwal: Oscillation theorems and existence of positive monotone solutions for second order non linear difference equations. Math. Comp. Modelling 21 (1995), 63–84. DOI 10.1016/0895-7177(94)00215-A | MR 1316120
[16] P.J.Y. Wong and R.P. Agarwal: The oscillation of an $m$-th order perturbed nonlinear difference equation. Arch. Math. (Brno) 32 (1996), 13–27. MR 1399838
[17] A. Zafer: On the existence of positive solutions and the oscillation of solutions of higher order difference equations with forcing terms. Preprint. MR 1666123
[18] A. Zafer: Oscillatory and asymptotic behavior of higher order difference equations. Math. Comput. Modelling 21 (1995), 43–50. DOI 10.1016/0895-7177(95)00005-M | MR 1317929 | Zbl 0820.39001
Partner of
EuDML logo