Previous |  Up |  Next

Article

Keywords:
sequences; statistical independence; discrepancy; distribution functions
Summary:
We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.
References:
[1] Cameron, R. H., Martin, W. T.: Evaluation of various Wiener integrals by use of certain Sturm-Liouville differential equations. Bull. Amer. Math. Soc. 51 (1945), 73–90. DOI 10.1090/S0002-9904-1945-08275-5 | MR 0011401
[2] Doetsch, G.: Handbuch über die Laplace Transformation, II. Birkhäuser Verlag, Basel, 1955. MR 0079138
[3] Donsker, M.D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 23 (1952), 277–281. DOI 10.1214/aoms/1177729445 | MR 0047288 | Zbl 0046.35103
[4] Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20 (1949), 393–403. DOI 10.1214/aoms/1177729991 | MR 0030732 | Zbl 0035.08901
[5] Grabner, P. J., Tichy, R. F.: Remarks on statistical independence of sequences. Math. Slovaca 44 (1994), 91–94. MR 1290276
[6] Grabner, P. J., Strauch, O., Tichy, R. F.: Maldistribution in higher dimensions. Mathematica Pannonica 8 (1997), 215–223. MR 1476099
[7] Kac, M.: Probability and related topics in physical sciences. Lectures in Applied Math., Proceedings of a Summer Seminar in Boulder, Col. 1957, Interscience Publishers, London, New York, 1959. MR 0102849 | Zbl 0087.33003
[8] Kolmogoroff, A.: Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933), 83–91. Zbl 0006.17402
[9] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974. MR 0419394
[10] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin, Heidelberg, New York, 1966. MR 0232968
[11] Rauzy, G.: Propriétés statistiques de suites arithmétiques. Le Mathématicien, No. 15, Collection SUP, Presses Universitaires de France, Paris, 1976. MR 0409397 | Zbl 0337.10036
[12] Ray, D.: On spectra of second-order differential operators. Trans. Amer. Math. Soc. 77 (1954), 299–321. DOI 10.1090/S0002-9947-1954-0066539-2 | MR 0066539 | Zbl 0058.32901
[13] Strauch, O.: $L^2$ discrepancy. Math. Slovaca 44 (1994), 601–632. MR 1338433
[14] Strauch, O.: On the set of all distribution functions of a sequence. Proceedings of the conference on analytic and elementary number theory: a satellite conference of the European Congress on Mathematics ’96, Vienna, July 18–20, 1996. Dedicated to the honour of the 80th birthday of E. Hlawka, W. G. Nowak et al. (eds.), Universität Wien, 1996, pp. 214–229.
[15] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Oxford University Press, 1946. MR 0019765 | Zbl 0061.13505
[16] Winkler, R.: On the distribution behaviour of sequences. Math. Nachrichten 186 (1997) (to appear), 303–312. DOI 10.1002/mana.3211860118 | MR 1461227
Partner of
EuDML logo