Previous |  Up |  Next

Article

References:
[1] H. Bercovici: Factorization theorems and the structure of operators on Hilbert space. Annals of Math. 128 (1988), 399–431. DOI 10.2307/1971446 | MR 0960951 | Zbl 0706.47010
[2] H. Bercovici, C. Foias, C. Pearcy: Dual algebras with applications to invariant subspaces and dilation theory. CBMS Regional conference series in Math vol. 56, Amer. Math. Soc., Providence, R. I., 1985. MR 0787041
[3] S. Brown, B. Chevreau: Toute contraction à calcul fonctionnel isométrique est réflexive. C. R. Acad. Sci. Paris 307, Série I (1988), 185–188. MR 0955549
[4] B. Chevreau: Sur les contractions à calcul fonctionnel isométrique 2. Journal Operator Theory 20 (1988), 269–293. MR 1004124
[5] B. Chevreau, C. Pearcy: On the structure of contraction operators I. Journal Func. Anal. 76 (1988), 1–29. DOI 10.1016/0022-1236(88)90046-8 | MR 0923042
[6] B. Chevreau, G. Exner, C. Pearcy: On the structure of contraction operators III. Michigan. Math. Journal 36 (1989), 29–61. DOI 10.1307/mmj/1029003881 | MR 0989936
[7] B. Sz. Nagy, C. Foias: Harmonic Analysis of Operators on Hilbert Space. North Holland, Amsterdam, 1970. MR 0275190
[8] R. Olin, J. Thomson: Algebras of subnormal operators. Journal Func. Anal. 37 (1980), 271–301. DOI 10.1016/0022-1236(80)90045-2 | MR 0581424
[9] M. Ouannasser: Une remarque sur la classe $Ā_{1 \aleph _0}$. Math. Balkanica (N. S) 4 (1990), 203–205. MR 1088007
[10] M. Ouannasser: Sur les contractions de la classe $Ā_n$. Journal Operator Theory 28 (1992), 105–120. MR 1259919
Partner of
EuDML logo