Article
Keywords:
Barrelled space; convex-Baire space; normed lattice; pairwise Baire spaces; quasi-Baire spaces; quasi-uniformity
Summary:
We say that a real normed lattice is quasi-Baire if the intersection of each sequence of monotonic open dense sets is dense. An example of a Baire-convex space, due to M. Valdivia, which is not quasi-Baire is given. We obtain that $E$ is a quasi-Baire space iff $(E, T({\mathcal U}),T({\mathcal U}^{-1}))$, is a pairwise Baire bitopological space, where $\mathcal U$, is a quasi-uniformity that determines, in $L$. Nachbin’s sense, the topological ordered space $E$.
References:
[1] Ferrando, J.C.; Ferrer, J.:
On certain non barrelled normed spaces. Math. Japonica 38 (1993), 161–164.
MR 1204194
[2] Ferrer, J; Gregori, V; Alegre, C.:
Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. (1994), 877–884.
MR 1245452
[3] Fletcher, P.; Lindgren, W.F.:
Quasi-uniform Spaces. Marcel Dekker Inc. New York, 1982.
MR 0660063
[5] Nachbin, L.:
Topology and Order. Robert E. Kriegler Publishing Co., Huntington, New York, 1976.
MR 0415582 |
Zbl 0333.54002