[1] Barrett, J.H.:
Oscillation theory of ordinary linear differential equations. Advances in Math. 3 (1969), 415–509.
MR 0257462 |
Zbl 0213.10801
[2] Bobrowski, D.:
Asymptotic behaviour of functionally bounded solutions of the third order nonlinear differential equation. Fasc. Math. (Poznañ) 10 (1978), 67–76.
MR 0492524 |
Zbl 0432.34035
[4] Erbe, L. H.:
Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equation. Ann. Math. Pura Appl. 110 (1976), 373–393.
DOI 10.1007/BF02418014 |
MR 0427738
[6] Greguš, M.:
Third Order Linear Differential Equations. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1987.
MR 0882545
[7] Greguš, M.:
On the asymptotic properties of solutions of nonlinear third order differential equation. Archivum Mathematicum (Brno) 26 (1990), 101–106.
MR 1188268
[8] Greguš, M.:
On the oscillatory behaviour of certain third order nonlinear differential equation. Archivum Mathematicum (Brno) 28 (1992), 221–228.
MR 1222290
[9] Greguš, M. and Greguš Jr. M.:
On the oscillatory properties of solutions of a certain nonlinear third order differential equation. J. Math. Analysis Applic. 181 (1994), 575–585.
DOI 10.1006/jmaa.1994.1045 |
MR 1264533
[10] Greguš, M. and Greguš Jr., M.: Asymptotic properties of solution of a certain nonautonomous nonlinear differential equations of the third order. Bollettino U.M.I. (7) 7-A (1993), 341–350.
[12] Heidel J. W.:
The existence of oscillatory solution for a nonlinear odd order nonlinear differential equation. Czechoslov. Math. J. 20 (1970), 93–97.
MR 0257468
[13] Ladde, G. S., Lakshmikantham, V. and Zhank, B. G.:
Oscillation Theory of Differential Equations with Deviating Arguments. Marchel Dekker, Inc., New York, 1987.
MR 1017244
[14] Parhi, N. and Parhi, S.:
Nonoscillation and asymptotic behaviour forced nonlinear third order differential equations. Bull. Inst. Math. Acad. Sinica 13 (1985), 367–384.
MR 0866573
[15] Parhi, N. and Parhi, S.:
On the behaviour of solution of the differential equations $(r(t)y^{\prime \prime })^{\prime } + q(t)(y^{\prime })^\beta + p(t)y^\alpha = f(t)$. Annales Polon. Math. 47 (1986), 137–148.
MR 0884931
[16] Swanson, C.A.:
Comparison and Oscillation Theory of Linear Differential Equations. New York and London, Acad. Press, 1968.
MR 0463570 |
Zbl 0191.09904