Article
Keywords:
Cauchy’s singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David
Summary:
Let $\Gamma $ be a rectifiable Jordan curve in the finite complex plane $\mathbb C$ which is regular in the sense of Ahlfors and David. Denote by $L^2_C (\Gamma )$ the space of all complex-valued functions on $\Gamma $ which are square integrable w.r. to the arc-length on $\Gamma $. Let $L^2(\Gamma )$ stand for the space of all real-valued functions in $L^2_C (\Gamma )$ and put \[ L^2_0 (\Gamma ) = \lbrace h \in L^2 (\Gamma )\; \int _{\Gamma } h(\zeta ) |\mathrm{d}\zeta | =0\rbrace . \] Since the Cauchy singular operator is bounded on $L^2_C (\Gamma )$, the Neumann-Poincaré operator $C_1^{\Gamma }$ sending each $h \in L^2 (\Gamma )$ into \[ C_1^{\Gamma } h(\zeta _0) := \Re (\pi \mathrm{i})^{-1} \mathop {\mathrm P. V.}\int _{\Gamma } \frac{h(\zeta )}{\zeta -\zeta _0} \mathrm{d}\zeta , \quad \zeta _0 \in \Gamma , \] is bounded on $L^2(\Gamma )$. We show that the inclusion \[ C_1^{\Gamma } (L^2_0 (\Gamma )) \subset L^2_0 (\Gamma ) \] characterizes the circle in the class of all $AD$-regular Jordan curves $\Gamma $.
References:
[2] G. David:
Opérateurs intégraux singuliers sur certaines courbes du plane complexe. Ann. Scient. Éc. Nor. Sup. 17 (1984), 157–189.
DOI 10.24033/asens.1469 |
MR 0744071
[3] P.L. Duren:
Theory of $H^p$ spaces. Academic Press, 1970.
MR 0268655
[5] J. Král, I. Netuka, J. Veselý: Teorie potenciálu II. Státní ped. nakl., Praha, 1972.
[6] J. G. Krzy.z:
Some remarks concerning the Cauchy operator on AD-regular curves. Annales Un. Mariae Curie-Skłodowska XLII, 7 (1988), 53–58.
MR 1074844 |
Zbl 0716.30034
[7] J. G. Krzy.z:
Generalized Neumann–Poincaré operator and chord-arc curves. Annales Un. Mariae Curie-Skłodowska XLIII, 7 (1989), 69–78.
MR 1158099 |
Zbl 0736.30028
[8] J. G. Krzy.z: Chord-arc curves and generalized Neumann-Poincaré operator $C_1^{\Gamma }$. “Linear and Complex Analysis Problem Book 3”, Lecture Notes in Math. 1579, V. P. Havin and N. K. Nikolski (eds.), 1994, p. 418.
[9] E. Martensen:
Eine Integralgleichung für die logarithmische Gleichgewichtsbelegung und die Krümmung der Randkurve eines ebenen Gebiets. Z. angew. Math.-Mech. 72 (6) (1992), T596–T599.
MR 1178329
[11] I. I. Priwalow:
Randeigenschaften analytischer Funktionen. Translated from Russian, Deutscher Verlag der Wissenschaften, Berlin, 1956.
MR 0083565 |
Zbl 0073.06501
[12] S. Saks:
Theory of the integral. Dover Publications, New York, 1964.
MR 0167578