Previous |  Up |  Next

Article

Summary:
Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm loc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm{d}x <\infty $.
References:
[1] Atkinson, F.V.: Discrete and continuous boundary problems. (1964), Academic Press, New York. MR 0176141 | Zbl 0117.05806
[2] Bobisud, L.E., and O’Regan, D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance. Jour. Math. Anal. Appl. 184 (1994), 263–284. DOI 10.1006/jmaa.1994.1199 | MR 1278388
[3] Bobisud, L.E., O’Regan, D., and Royalty, W.D.: Singular boundary value problems. Appl. Anal. 23 (1986), 233–243. DOI 10.1080/00036818608839643 | MR 0870490
[4] Everitt, W.N., Kwong, M.K., and Zettl, A.: Oscillations of eigenfunctions of weighted regular Sturm Liouville problems. J. London Math. Soc. 27 (1983), 106–120. DOI 10.1112/jlms/s2-27.1.106 | MR 0686509
[5] Habets, P., and Zanolin, F.: Upper and lower solutions for a generalized Emden-Fowler equation. J. Math. Anal. Appl. 181 (1994), 684–700. DOI 10.1006/jmaa.1994.1052 | MR 1264540
[6] Iannacci, R., and Nkashama, M.N.: Unbounded perturbations of forced second order ordinary differential equations at resonance. Jour. Diff. Eq. 69 (1987), 289–309. DOI 10.1016/0022-0396(87)90121-5 | MR 0903389
[7] Mawhin, J.: Topological degree methods in nonlinear boundary value problems. AMS Regional Conf. Series in Math. 40, Providence, 1978. MR 0525202
[8] Mawhin, J., and Ward, J.R.: Nonuniform nonresonance conditions at the first two eigenvalues for periodic solutions of forced Liénard and Duffing equations. Rocky M.J. Math. 112 (1982), 643–654. DOI 10.1216/RMJ-1982-12-4-643
[9] Naimark, M.A.: Linear differential operators, Part II. Ungar Publ. Co., London, 1968. MR 0262880 | Zbl 0227.34020
[10] O’Regan, D.: Theory of singular boundary value problems. World Scientific Press, Singapore, 1994.
[11] O’Regan, D.: Existence principles and theory for singular Dirichlet boundary value problems. Diff. Eqms. and Dynamical Systems 3 (1995), 289–304. MR 1386750
[12] O’Regan, D.: Singular Dirichlet boundary value problems I: Superlinear and nonresonance case. Nonlinear Analysis 29 (1997), 221–245. DOI 10.1016/S0362-546X(96)00026-0 | MR 1446226
Partner of
EuDML logo