[1] A. Ben-Israel and T. N. Greville: Generalized Inverses: Theory and Applications. Academic Press, New-York, 1973.
[2] A. Berman and R. J. Plemmons:
Nonnegative Matrices in the Mathematical Sciences. Academic Press, New-York, 1979.
MR 0544666
[3] S. L. Campbell and C. D. Meyer, Jr.:
Generalized Inverses of Linear Transformations. Dover Publications, New York, 1991.
MR 1105324
[5] M. Fiedler:
A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Math. J. 25 (1975), 619–633.
MR 0387321
[7] C. D. Meyer:
The condition of a finite Markov chain and perturbations bounds for the limiting probabilities. SIAM J. Alg. Disc. Meth. 1 (1980), 273–283.
DOI 10.1137/0601031 |
MR 0586154
[9] C. D. Meyer, Jr. and G. W. Stewart:
Derivatives and perturbations of eigenvectors. SIAM J. Numer. Anal. 25 (1988), 679–691.
DOI 10.1137/0725041 |
MR 0942213
[12] M. Neumann and R. J. Plemmons:
Convergent nonnegative matrices and iterative methods for consistent linear systems. Numer. Math. 31 (1978), 265–279.
DOI 10.1007/BF01397879 |
MR 0514597
[14] E. Seneta:
Non-negative Matrices and Markov Chains. Second Edition. Springer Verlag, New-York, 1981.
MR 2209438
[15] R. S. Varga:
Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.
MR 0158502