Previous |  Up |  Next

Article

References:
[1] I. S. Akhatov, R. K. Gazizov et N. Kh. Ibragimov: Bäcklund transformations and non local symmetries. Soviet. Math. Dokl. 36, 3 (1988), 393–395. MR 0916922
[2] G. W. Bluman et S. Kumei: Symmetry based algorithms to relate partial differential equations: II. Linearization by non local symmetries. Euro. Jnl. of Applied Mathematics 1 (1990), 217–223. DOI 10.1017/S0956792500000188 | MR 1117350
[3] N. G. Khor’kova: Conservation laws and non local symmetries. Math. Notes translated from Mathematicheskie Zametki 44 (1988), 134–144. MR 0962383
[4] A. M. Vinogradov et I. S. Krasil’shchik: Non local trends in the geometry of differential equations: Symmetries, conservation laws and Bäcklund transformations. Acta Applicandae Mathematicae 15 (1989), 161–209. DOI 10.1007/BF00131935 | MR 1007347
[5] A. M. Vinogradov et I. S. Krasil’shchik: Nonlocal symmetries and the theory of coverings. Acta Applicandae Mathematicae 2 (1984), 79–96. DOI 10.1007/BF01405492 | MR 0736873
[6] A. M. Vinogradov, I. S. Krasil’shchik et Lychagin: Geometry of Jet Spaces and Non-linear Partial Differential Equations. Gordon and Breach, 1986.
Partner of
EuDML logo