Previous |  Up |  Next

Article

References:
[1] M. Harminc: Sequential convergences on abelian lattice-ordered groups. Convergence structures, 1984, Mathematical Research, Band 24, Akademie Verlag, Berlin, 1985, pp. 153–158. MR 0835480 | Zbl 0581.06009
[2] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czechoslov. Math. J. 37 (1987), 553–546. MR 0913986
[3] M. Harminc: Sequential convergences on lattice ordered groups. Czechoslov. Math. J. 39 (1989), 232–238. MR 0992130
[4] M. Harminc, J. Jakubík: Maximal convergences and minimal proper convergences in $\ell $-groups. Czechoslov. Math. J. 39 (1989), 631–640. MR 1017998
[5] J. Hashimoto: On direct product decompositions of partially ordered sets. Ann. of Math 34 (1951), 315–318. DOI 10.2307/1969532 | MR 0043067
[6] J. Jakubík: Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269–272. MR 0977905
[7] J. Jakubík: Lattice ordered groups having a largest convergence. Czechoslov. Math. J. 39 (1989), 717–729. MR 1018008
[8] J. Jakubík: Convergences and higher degrees of distributivity in lattice ordered groups and Boolean algebras. Czechoslov. Math. J. 40 (1990), 453–458. MR 1065024
[9] J. Jakubík: Sequential convergences on free lattice ordered groups. Math. Bohemica 117 (1992), 48–54. MR 1154054
Partner of
EuDML logo