Previous |  Up |  Next

Article

References:
[1] R. A. Gordon: A general convergence theorem for nonabsolute integrals. J. London Math. Soc. 44 (1991), 301–309. MR 1136442 | Zbl 0746.26003
[2] R. A. Gordon: On the equivalence of two convergence theorems for the Henstock integral. Real Anal. Exchange 18 (1992/93), 261–266. MR 1205521
[3] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechosl. Math. J. 45 (1995), 79–106. MR 1314532
[4] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results in Mathematik 21 (1992), 138–151. DOI 10.1007/BF03323075 | MR 1146639
[5] J. Jarník, J. Kurzweil and Š. Schwabik: On Mawhin’s approach to multiple nonabsolutely convergent integrals. Čas. pěst. mat. 108 (1983), 356–380. MR 0727536
[6] P. Y. Lee and T. S. Chew: A better convergence theorem for Henstock integrals. Bull. London Math. Soc. 17 (1985), 557–564. DOI 10.1112/blms/17.6.557 | MR 0813739
[7] P. Y. Lee and T. S. Chew: A Riesz-type definition of the Denjoy integral. Real Anal. Exchange 11 (1985/86), 221–227. MR 0828492
[8] E. J. McShane: Integration. Princeton University Press, 1947. MR 0082536 | Zbl 0033.05302
[9] F. Riesz and B. Sz. Nagy: Vorlesungen über Funktionalanalysis. VEB Deutscher Verlag der Wissenschaften Berlin, 1956. MR 0083695
[10] K. Yosida: Functional Analysis. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Zbl 0126.11504
Partner of
EuDML logo