[1] Adams D. R., Hedberg L. I.:
Function Spaces and Potential Theory. Springer-Verlag, 1996.
MR 1411441
[9] Gilbarg D., Trudinger N. S.:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1983, Second Ed.
MR 0737190 |
Zbl 0562.35001
[10] Giusti E.:
Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, 1985.
MR 0775682
[11] Heinonen J., Kilpeläinen, T, Martio O.:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford, 1993.
MR 1207810 |
Zbl 0780.31001
[13] Malý J., Ziemer W. P.:
Fine Regularity of Elliptic Equations. Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, 1997.
DOI 10.1090/surv/051/04 |
MR 1461542
[14] Moschen, Maria Pia:
Principio di massimo forte per le frontiere di misura minima. Ann. Univ. Ferrara, Sez. VII 23 (1977), 165-168.
MR 0482508 |
Zbl 0384.49030
[17] Simon L.:
Lectures on Geometric Measure Theory. Proc. Centre Math. Analysis, ANU Vol. 3, 1983.
MR 0756417 |
Zbl 0546.49019
[19] Sternberg P., Ziemer W. P.:
The Dirchlet problem for functions of least gradient. IMA Vol. Math. Appl. 47 (1993), 197-214.
MR 1246349
[20] Sternberg P., Williams G., Ziemer W. P.:
Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992), 35-60.
MR 1172906 |
Zbl 0756.49021
[21] Ziemer W. P.:
Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag, New York, 1989, Graduate Texts in Math.
MR 1014685 |
Zbl 0692.46022