Article
Keywords:
degeneracy; Muckenhoupt class; pointwise estimate; nonlinear elliptic equation; capacity; a-priori estimate
Summary:
The paper is devoted to the estimate
\vert u(x,k)\vert\leq K\vert k\vert\left\{\mathop cap\nolimits_{p,w}(F)\frac{\rho^p}{w(B(x,\rho))}\right\} ^{\frac1{p-1}},
$2\<p<n$ for a solution of a degenerate nonlinear elliptic equation in a domain ${B(x_0,1)\setminus F}$, $F\subset B(x_0,d)=\{x\in\Bbb R^n |x_0-x|<d\}$, $d<\frac12$, under the boundary-value conditions $u(x,k)=k$ for $x\in\partial F$, $ u(x,k)=0$ for $x\in\partial B(x_0,1)$ and where $0<\rho\leq\mathop dist(x,F)$, $w(x)$ is a weighted function from some Muckenhoupt class, and $\mathop cap_{p,w}(F)$, $w(B(x,\rho))$ are weighted capacity and measure of the corresponding sets.
References:
[1] Skrypnik I. V.:
Nonlinear elliptic boundary value problems. B. G. Teubner Verlag, Leipzig, 1986.
MR 0915342 |
Zbl 0617.35001
[2] Skrypnik I. V.:
New conditions of homogenization of nonlinear Dirichlet problems in perforated domains. Ukrainian Math. J. 48 (1996), no. 5, 675-694.
DOI 10.1007/BF02384225 |
MR 1417035
[3] Heinonen J., Kilpelainen T., Martio O.:
Nonlinear potential theory of degenerate elliptic equations. Clarendon Press, Oxford, 1993.
MR 1207810
[6] Gutiérrez C. E., Nelson G. S.:
Bounds for the fundamental solution of degenerate parabolic equations. Commun. Partial Differential Equations 13 (1988), no. 5, 635-649.
DOI 10.1080/03605308808820555 |
MR 0919445
[7] Leonardi S., Skrypnik I. I.: Necessary condition for regularity of a boundary point for a degenerate quasilinear parabolic equations. Catania Univ., Catania, 1995, preprint.