Article
Keywords:
coefficient problems; Koebe function; univalent function
Summary:
Let $S$ denote the class of functions $f(z) = z + a_2z^2 + a_3z^3 + \ldots$ univalent and holomorphic in the unit disc $\varDelta= \{z |z| < 1\}$. In the paper we obtain a sharp estimate of the functional $|a_3 - \alpha a^2_2| + \alpha|a_2|^2$ in the class $S$ for an arbitrary $\alpha\in\Bbb R$.
References:
[1] L. Bieberbach: Über die Koeffizienten derjenigen Potenzreihen, welche schlichte Abbildung des Einheitskreises vermitteln. Preuss. Akad. deг Wiss. Sitzungsb. 38 (1916), 940-955. Berlin.
[2] G. M. Goluzin:
Some questions of the theory of univalent functions. Trudy Mat. Inst. Steklov 27 (1949), 51-56. (In Russian.)
MR 0042510
[3] Z. J. Jakubowski K. Zyskowska:
On an estimate of some functional in the class of holomorphic univalent functions. Mathematica Bohemica 118 (1993), 281-296.
MR 1239123
[4] J. A. Jenkins:
On certain coefficients on univalent functions. Princ. Univ. Press, New Jeгsey, 1960, pp. 159-194.
MR 0117345
[6] A. C. Schaeffer D. C. Spencer:
Coefficient regions for schlicht functions. Amer. Math. Soc., Colloq. Publ. 35 (1950), 36-37.
MR 0037908