[1] M. G. Crandall P. H. Rabinowitz:
Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rat. Mech. Anal. 52 (1973), 161-180.
DOI 10.1007/BF00282325 |
MR 0341212
[2] M. G. Crandall P. H. Rabinowitz:
The Hopf bifurcation theorem in infinite dimensions. Aгch. Rat. Mech. Anal. 67 (1977), 53-72.
DOI 10.1007/BF00280827 |
MR 0467844
[4] G. Da Prato A. Lunardi:
Hopf bifurcation for nonlinear integrodifferential equations in Banach spaces with infinite delay. Indiana Univ. Math. Ј., Vol. 36, No 2 (1987).
MR 0891773
[5] J. K. Hale:
Theory of functional differential equations. Springer-Verlag, New York 1977.
MR 0508721 |
Zbl 0352.34001
[б] D. Henry:
Geometric theory of semilinear parabolic equations. Springer-Verlag Berlin-Heidelbeгg-New York 1981.
MR 0610244 |
Zbl 0456.35001
[7] H. C. Simpson:
Stability of periodic solutions of nonlinear integrodifferential systems. SIAM Ј. Appl. Math. 38 (1980), З41-З6З.
MR 0579423 |
Zbl 0457.45005
[9] O. J. Staffans:
Hopf bifurcation for an infinite delay functional equations. NATO ASI Series. Vol F 37, Springer-Verlag Berlin-Heidelberg 1987.
MR 0921919
[11] A. Tesei:
Stability properties for partial Volterra integrodifferential equations. Аnn. Mat. Puгa Аppl. 126 (1980), 103-115.
MR 0612355 |
Zbl 0463.45009
[12] A. Torchinski:
Real-variable methods in harmonic analysis. Аcademic Press INC, 1986.
MR 0869816
[13] Y. Yamada Y. Niikura:
Bifurcation of periodic solutions for nonlinear parabolic equations with infinite delays. Funkc. Ekvac. 29 (1986), 309- ЗЗЗ.
MR 0904545
[14] K. Yoshida:
The Hopf bifurcation and its stability for semilinear diffusion equation with time delay arising in ecology. Hiгoshima Math. Ј. 12 (1982), 321-348.
DOI 10.32917/hmj/1206133754 |
MR 0665499
[15] K. Yoshida, K Kishimoto:
Effect of two time delays on partially functional differential equations. Kumamoto Ј. Sci. (Math.) 15 (1983), 91-109.
MR 0705720 |
Zbl 0572.35086