Article
Keywords:
three-web; torsion tensor of a web; distribution; projector; manifold; connection; web
Summary:
A 3-web on a smooth $2n$-dimensional manifold can be regarded locally as a triple of integrable $n$-distributions which are pairwise complementary, [5]; that is, we can work on the tangent bundle only. This approach enables us to describe a $3$-web and its properties by invariant $(1,1)$-tensor fields $P$ and $B$ where $P$ is a projector and $B^2=$ id. The canonical Chern connection of a web-manifold can be introduced using this tensor fields, [1]. Our aim is to express the torsion tensor $T$ of the Chern connection through the Nijenhuis $(1,2)$-tensor field $[P,B]$, and to verify that $[P,B]=0$ is a necessary and sufficient conditions for vanishing of the torsion $T$.
References:
[1] P. Nagy:
On the canonical connection of a three-web. Publ. Math. Debrecen 32 (1985), 93-99.
MR 0810595
[2] P. Nagy:
Invariant tensor fields and the canonical connection of a 3-web. Aeq. Math. 35 (1988), 31-44. University of Waterloo, Birkhäuser Verlag, Basel.
MR 0939620
[6] A. G. Walker:
Almost-product stгuctures. Differential geometry, Proc. of Symp. in Pure Math.. vol. III, 1961, pp. 94-100.
MR 0123993
[7]
Webs & quasigroups. (1993). Tver State University, Russia.
Zbl 0776.00019