Previous |  Up |  Next

Article

Keywords:
reduced boundary; interior normal in Federer’s sense; Neumann operator; compact operator; Hausdorff measure
Summary:
One of the classical methods of solving the Dirichlet problem and the Neumann problem in $\bold R^m$ is the method of integral equations. If we wish to use the Fredholm-Radon theory to solve the problem, it is useful to estimate the essential norm of the Neumann operator with respect to a norm on the space of continuous functions on the boundary of the domain investigated, where this norm is equivalent to the maximum norm. It is shown in the paper that under a deformation of the domain investigated by a diffeomorphism, which is conformal (i.e. preserves angles) on a precisely specified part of boundary, for the given norm there exists a norm on the space of continuous functions on the boundary of the deformated domain such that this norm is equivalent to the maximum norm and the essential norms of the corresponding Neumann operators with respect to these norms are the same.
References:
[AKK] T. S. Angell R. E. Kleinman J. Král: Layer potentials on boundaries with corners and edges. Casopis pest. mat. 113 (1988), 387-402. MR 0981880
[D] M. Dont E. Dontová: Invariance of the Fredholm radius of an operator in potential theory. Časopis pěst. mat. 112 (1987), 269-283. MR 0905974
[F1] H. Federer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9(1958), 447-451. DOI 10.1090/S0002-9939-1958-0095245-2 | MR 0095245 | Zbl 0087.27302
[F2] H. Federer: Geometric measure theory. Springer-Verlag, 1969. MR 0257325 | Zbl 0176.00801
[F3] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44-76. DOI 10.1090/S0002-9947-1945-0013786-6 | MR 0013786 | Zbl 0060.14102
[FF] H. Federer W. H. Fleming: Normal and integral currents. Ann. of Math. 72 (1960), 458-520. DOI 10.2307/1970227 | MR 0123260
[K1] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics, vol. 823, Springer Verlag, Berlin, 1980. DOI 10.1007/BFb0091035 | MR 0590244
[K2] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (1970), 556-597. MR 0271554
[K3] J. Král: Note on sets whose characteristic functions have signed measures for theorem partial derivatives. Časopis pěst. mat. 86 (1961), 178-194. (In Czech.) MR 0136697
[K4] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. DOI 10.2307/1994580 | MR 0209503
[K5] J. Král: The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15 (90) (1965), 565-588. MR 0190363
[KW] J. Král W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace Matematiky 31 (1986), 293-308. MR 0854323
[ME1] D. Medková: Invariance of the Fredholm radius of the Neumann operator. Časopis pěst. mat. 115 (1990), 147-464. MR 1054002
[ME2] D. Medková: On the convergence of Neumann series for noncompact operators. Czechoslovak Math. J. 41 (116) (1991), 3112-316. MR 1105448
[S] N. Suzuki: On the convergence of Neumann series in Banach space. Math. Ann. 220 (1976), 143-146. DOI 10.1007/BF01351698 | MR 0412855 | Zbl 0304.47016
Partner of
EuDML logo