Article
Keywords:
pseudopartition; strong Luzin condition; bounded variation; Riemann type integral; controlled convergence theorem; ACG$^\circ$; ACG$^\circ$
Summary:
A descriptive characterization of a Riemann type integral, defined by BV partition of unity, is given and the result is used to prove a version of the controlled convergence theorem.
References:
[1] B. Bongiorno L. Di Piazza:
Convergence theorems for generalized Riemann-Stieltjes integrals. Real Anal. Exchange 11 (1991-92), 339-361.
MR 1147373
[2] B. Bongiorno M. Giertz W. F. Pfeffer:
Some nonabsolutely convergent integrals in the real line. Boll. Un. Mat. Ital. B (7) 6 (1992), 371-402.
MR 1171108
[3] B. Bongiorno W. F. Pfeffer:
A concept of absolute continuity and a Riemann type integral. Comment. Math. Univ. Carolin. 33 (1992), 184-196.
MR 1189651
[4] D. Caponetti V. Marraffa:
An integral in the real line defined by BV partitions of unity. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 69-82.
MR 1282323
[5] J. Kurzweil J. Mawhin W. F. Pfeffer:
An integral defined by approximating BV partitions of unity. Czechoslovak Math. J. 41 (1991), 695-712.
MR 1134958
[6] P. Y. Lee:
On ACG* functions. Real Anal. Exchange IS (1989-90), 754-759.
MR 1059436
[9] W. F. Pfeffer:
The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993.
MR 1268404 |
Zbl 0804.26005