Previous |  Up |  Next

Article

References:
[1] H. Aling, J. M. Schumacher: A nine fold canonical decomposition for linear systems. Internat. J. Control 39 (1984), 779-805. MR 0738723 | Zbl 0539.93007
[2] C Commault J. Descusse J. F. Lafay, M. Malabre: New decoupling invariants: the essential orders. Internat. J. Control 44 (1986), 689-700.
[3] J. Descusse, J. M. Dion: On the structure at infinity of linear square decouplable systems. IEEE Trans. Automat. Control AC-27 (1982), 971-974. MR 0680500
[4] J. Descusse J. F. Lafay, M. Malabre: Solution of Morgan's problem. IEEE Trans. Automat. Control AC-33 (1988), 732-739. MR 0950794
[5] J. M. Dion, C Commault: The minimal delay decoupling problem: feedback implementation with stability. SIAM J. Control 26 (1988), 66-88. MR 0923304 | Zbl 0646.93049
[6] P. L. Falb, W. Wolovich: Decoupling in the design and synthesis of multivariable systems. IEEE Trans. Automat. Control AC-12 (1967), 651 - 669.
[7] G. Forney: Minimal bases of rational vector spaces with application to multivariable linear systems. SIAM J. Control 13 (1975), 493-520. MR 0378886
[8] M. L. J. Hautus, H. Heymann: Linear feedback: An algebraic approach. SIAM J. Control 76(1978), 83-105. MR 0476024 | Zbl 0385.93015
[9] M. L. J. Hautus, H. Heymann: Linear feedback decoupling: Transfer function analysis. IEEE Trans. Automat. Control AC-28 (1983), 823-832. MR 0717840 | Zbl 0523.93035
[10] T. Koussiouris: A frequency domain approach to the block decoupling problem, part 2. Internat. J. Control 32 (1980), 443-447. MR 0587180
[11] S. Icart J. F. Lafay, M. Malabre: Geometric characterization of the interconnection zeros for controllable regularly decouplable systems. Joint Conference in Control Theory, Genova 1990.
[12] S. Icart, J. F. Lafay: Decoupling with stability for a class of linear systems via static state feedback. ECC91, Grenoble, juillet 1991.
[13] J. J. Loiseau: Some geometric considerations about the Kronecker normal form. Internat. J. Control 42 (1985), 1411-1431. MR 0818345 | Zbl 0609.93014
[14] M. Malabre: Structure á l'infini des triplets invariants: application á la poursuite parfaite de modéle. Analysis and Optimisation of Systems - Proceedings of the Fifth International Conference on Analysis and Optimization of Systems Versailles 1982 (A. Bensoussan, J. L. Lions, eds.; Lecture Notes in Control and Information Sciences 44), Springer-Verlag, Berlin 1982. MR 0833317 | Zbl 0566.93009
[15] M. Malabre, V. Kučera: Infinite structure and exact model matching problem; a geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 226 - 268.
[16] M. Malabre: Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. 122/123/124 (1989), 591-624. MR 1020003 | Zbl 0679.93048
[17] M. Malabre, R. Rabah: Zeros at infinity for infinite dimensional systems. Proc. M.T.N.S.89 Amsterdam, Vol. 1, Birkhauser-Verlag, Basel-Boston 1990, pp. 199-206. MR 1115331 | Zbl 0726.93041
[18] C. Moog: Inversion, decouplage, poursuite de modele des systemes non lineaires. These es Sciences, Nantes 1987.
[19] A. S. Morse: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 446-465. MR 0386762 | Zbl 0259.93011
[20] H. H. Rosenbrock: State Space and Multivariable Theory. J. Wiley, New York 1970. MR 0325201 | Zbl 0246.93010
[21] J. S. Thorp: The singular pencil of a linear dynamical system. Internat. J. Control 18 (1973), 577-596. MR 0342229 | Zbl 0262.93020
[22] J. C. Willems: Almost invariant subspaces; an approach to high gain feedback design. Part 1: almost controlled subspaces. IEEE Trans. Automat. Control AC-26 (1981), 235 - 252. MR 0609263 | Zbl 0463.93020
[23] W. A. Wolovich, P. Falb: Invariants and canonical forms under dynamic compensation. SIAM J. Control 11 (1976), 998-1008. MR 0424306 | Zbl 0344.93019
[24] W. M. Wonham: Linear Multivariable Control: a Geometric Approach. Springer-Verlag, New York 1979. MR 0569358 | Zbl 0424.93001
Partner of
EuDML logo