Previous |  Up |  Next

Article

References:
[1] G. C. Goodwin, K. S. Sin: Adaptive Filtering, Prediction and Control. Prentice-Hall, New Jersey 1984. Zbl 0653.93001
[2] T. J. Moir: Optimal deconvolution smoother. IEE Proc. Pt. D 133 (1986), 1, 13-18. Zbl 0588.93067
[3] V. Kučera: Discrete Linear Control. J. Wiley, Chichester 1979. MR 0573447
[4] T. J. Moir, M. J. Grimble: Optimal self-tuning filtering prediction and smoothing for discrete multivariable processes. IEEE Trans. Automat. Control AC-29 (1984), 2, 128-137. Zbl 0537.93063
[5] U. Shaked: Transfer function approach to the fixed-point continuous smoothing problem. IEEE Trans. Automat. Control AC-23 (1978), 5, 945-948. Zbl 0396.93050
[6] M. J. Grimble: A new finite-time linear smoothing filter. Internat. J. Systems Sci. 11 (1980), 10, 1189-1212. Zbl 0456.93058
[7] T. J. Moir, M. J. Grimble: Finite interval smoothing for discrete-time systems. Systems Sci. 8 (1982), 1, 53-74. MR 0730756 | Zbl 0547.93073
[8] M. J. Grimble: $H_{\infite}$ design of optimal linear filters. In: Linear Circuits, Systems and Signal Processing: Theory and Application, MTNS Conf. Publication (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), North-Holland, Amsterdam 1988, pp. 533-540. MR 1031072
[9] U. Shaked: A transfer function approach to the linear discrete stationary filtering and the steady-state discrete optimal control problems. Internat. J. Control 29 (1979), 2, 279-291. MR 0527853 | Zbl 0401.93045
[10] V. Panuška: A new form of the extended Kalman filter for parameter estimation in linear systems with correlated noise. IEEE Trans. Automat. Control AC-25 (1980), 2, 229-235. MR 0567379
[11] P. T. K. Fung, M. J. Grimble: Dynamics ship positioning using a self-tuning Kalman filter. IEEE Trans. Automat. Control AC-28 (1983), 3, 339-350.
Partner of
EuDML logo