[1] S. Attasi: Modellisation et traitement de suites a deux indices. IRIA Rap. Laboria, 1975.
[2] E. Fornasini, G. Marchesini:
State space realization theory of two-dimensional filters. IEEE Trans. Automat. Control AC-21 (1976), 484-491.
MR 0414239 |
Zbl 0332.93072
[3] E. Fornasini, G. Marchesini:
Doubly indexed dynamical systems: State space models and structural properties. Math. System Theory 12 (1978), 59-75.
MR 0510621 |
Zbl 0392.93034
[4] T. Kaczorek:
General response formula for two-dimensional linear systems with variable coefficients. IEEE Trans. Automat. Control AC-31 (1986), 278-280.
MR 0825885 |
Zbl 0667.93049
[5] T. Kaczorek:
Singular general model of 2-D systems and its solution. IEEE Trans. Automat. Control AC-33 (1988), 1060- 1061.
MR 0965201 |
Zbl 0699.93061
[6] T. Kaczorek:
Singular multidimensional linear discrete systems. Proc. IEEE Internat. Symp. Circuits and Systems Helsinki, June 7-9, 1988, pp. 105-108.
Zbl 0691.93032
[7] T. Kaczorek:
Singular Roesser model and reduction to its canonical form. Bull. Polish Acad. Sci. Tech. Sci. 35 (1987), 645-652.
Zbl 0668.93017
[8] T. Kaczorek:
General response formula and minimum energy control for general singular model of 2-D systems. IEEE Trans. Automat. Control AC-34 (1989), 433-436.
MR 1047996
[9] T. Kaczorek:
General response formula, controllability and observability for singular 2-D linear systems with variable coefficients. Proc. IMACS-IFAC Internat. Symp. Math, and Intal. Models in System Simul. Sept. 3-7, Brussels 1990.
MR 1183033
[10] T. Kaczorek:
Equivalence of singular 2-D linear models. Bull. Pol. Acad. Sci. Tech. Sci. 37 (1989), 263-267.
MR 1188749 |
Zbl 0716.93030
[11] T. Kaczorek:
Existence and uniqueness of solutions and Cayley-Hamilton theorem for general singular model of 2-D systems. Bull. Pol. Acad. Sci. Tech. Sci. 37 (1989) (in press).
Zbl 0721.93045
[12] T. Kaczorek:
Observability and reconstructibility of singular 2-D systems. Bull. Pol. Acad. Sci. 37 (1989), 531-538.
MR 1942865 |
Zbl 0739.93017
[13] T. Kaczorek:
Observers for 2-D singular systems. Bull. Pol. Scad. Sci. Tech. Sci. 37 (1989), 551-556.
MR 1994367 |
Zbl 0739.93018
[14] T. Kaczorek: Shuffle algorithm for singular 2-D systems. Bull. Pol. Acad. Sci. Tech. Sci. 38 (1990) (in press).
[15] T. Kaczorek:
The linear-quadratic optimal regulator for singular 2-D systems with variable coefficients. IEEE Trans. Automat. Control AC-34 (1989), 565 - 566.
MR 0991908
[16] T. Kaczorek, M. Świerkosz:
Eigenvalue problem for singular Roesser model. Found. Control Engrg. 14 (1989), 25-37.
MR 1036615
[17] J. Kurek:
The general state-space model for a two-dimensional linear digital system. IEEE Trans. Automat. Control AC-30 (1985), 600-602.
MR 0789338 |
Zbl 0561.93034
[18] J. Kurek:
Strong observability and strong reconstructibility of a system described by the 2-D Roesser model. Internat. J. Control 47 (1988), 633-541.
MR 0929179 |
Zbl 0644.93007
[19] F. L. Lewis, B. G. Mertzios: On the analysis of two-dimensional discrete singular systems. Math. Control Signal Systems (1989) (in press).
[20] R. P. Roesser:
A discrete state-space model for linear image processing. IEEE Trans. Automat. Control AC-21 (1975), 1-10.
MR 0434507 |
Zbl 0304.68099
[21] M. Šebek M. Bisiacco, E. Fornasini:
Controllability and reconstructibility conditions for 2-D systems. IEEE Trans. Automat. Control AC-33 (1988), 496-499.
MR 0936276