Previous |  Up |  Next

Article

References:
[1] G. Golub, W. Kahan: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2 (1965), 205-224. MR 0183105 | Zbl 0194.18201
[2] J. J. More B. S. Garbow, K. E. Hillstrom: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. MR 0607350
[3] J. E. Dennis, H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Vlues. Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.
[4] C. C. Paige: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal. 11 (1974), 197-209. MR 0341842 | Zbl 0244.65023
[5] C. C. Paige, M. A. Saunders: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8 (1982), 43-71. MR 0661121 | Zbl 0478.65016
[6] M. J. D. Powell: Convergence properties of a class of minimization algoritms. In: Non-linear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1975. MR 0386270
[7] G. A. Shultz R. B. Schnabel, R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985), 47-67. MR 0772882
[8] T. Steihaug: The conjugate gradient method and trust regions in large-scale optimization. SIAM J. Numer. Anal. 20 (1983), 626-637. MR 0701102 | Zbl 0518.65042
Partner of
EuDML logo