Previous |  Up |  Next

Article

References:
[1] V. Angelova N. Christov, P. Petkov: Perturbation and numerical analysis of Kalman filters. Automatics \& Informatics (1993), 5/6, 19-20 (in Bulgarian).
[2] K. Birmiwal, J. Shen: Optimal robust filtering. Statist. Decisions 11 (1993), 101-119. MR 1238479 | Zbl 0790.62089
[3] B. Carew, P. Bélanger: Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Automat. Control 18 (1973), 6, 582-587. MR 0441498
[4] P. Gahinet, A. Laub: Computable bounds for the sensitivity of algebraic Riccati equation. SIAM J. Control Optim. 28 (1990), 6, 1461-1480. MR 1075213
[5] R. E. Griffin, A. P. Sage: Large and small scale sensitivity analysis of optimum estimation algorithms. IEEE Trans. Automat. Control 13 (1968), 4, 320-329. MR 0249176
[6] R. E. Griffin, A. P. Sage: Sensitivity analysis of discrete filtering and smoothing algorithms. AIAA J. 7 (1969), 10, 1890-1897. Zbl 0193.15701
[7] N. S. Gritsenko, al: Adaptive estimation: a survey. Zarubezhnaya Radioelectronica (1983), 7, 3-27 and (1985), 3, 3-26 (in Russian).
[8] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. Zbl 0203.50101
[9] R. E. Kalman: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Engrg. 82D (1960), 34-45.
[10] C. Kenney, G. Hewer: The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Optim. 28 (1990), 1, 50-69. MR 1035972 | Zbl 0695.65025
[11] B. Kovačević Ž. Durović, S. Glavaški: On robust Kalman filtering. Internat. J. Control 56 (1992), 3, 547-562. MR 1181998
[12] D. G. Lainiotis, F. L. Sims: Sensitivity analysis of discrete Kalman filters. Internat. J. Control 12 (1970), 4, 657-669. Zbl 0199.49204
[13] N. Madjarov, L. Mihaylova: Sensitivity analysis of linear optimal stochastic observers. In: Proc. of the IEEE Internat. Conf. on Systems, Man and Cybernetics, Systems Engineering in the Service of Humans. Le Touquet, France 1993, pp. 482-487.
[14] N. Madjarov, L. Mihaylova: Sensitivity of Kalman filters. Automatics \& Informatics (1993), 1/2, 1-18 (in Bulgarian). Zbl 0825.93814
[15] N. Madjarov, L. Mihaylova: Kalman filters under stochastic uncertainty. In: Proc. of the Tenth Internat. Conf. on Systems Engineering, Coventry 1994, 756-763.
[16] C. J. Masreliez, R. D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control 22 (1977), 3, 361-371. MR 0453124 | Zbl 0354.93054
[17] A. I. Matasov: The Kalman-Bucy filter accuracy in the guaranteed parameter estimation problem with uncertain statistics. IEEE Trans. Automat. Control 39 (1994), 3, 635-639. MR 1268311 | Zbl 0815.93081
[18] V. Mathews, Z. Xie: A stochastic gradient adaptive filter with gradient adaptive step size. IEEE Trans. Sign. Process. 41 (1993), 6, 2075-2087. Zbl 0775.93269
[19] R. K. Mehra: Approaches to adaptive filtering. IEEE Trans. Automat. Control 11 (1972), 5, 693-698. MR 0441510 | Zbl 0261.93036
[20] A. Moghaddamjoo: Approaches to adaptive Kalman filtering: a survey. Control Theory and Adv. Tech. 5 (1989), 1, 1-18. MR 0991227
[21] J. M. Morris: The Kalman filter: A robust estimator for some classes of linear quadratic problems. IEEE Trans. Inform. Theory 22 (1976), 5, 526-534. MR 0419040 | Zbl 0336.93037
[22] T. Nishimura: Modeling errors in Kalman filters. In: Theory and Application of Kalman Filtering (C.T. Leondes, ed.), Chapter 4, 1970, AGARDograph No. 139.
[23] M. Ogarkov: Methods for Statistical Estimation of Random Processes Parameters. Energoatomizdat, Moscow 1990 (in Russian). MR 1192134
[24] R. V. Patel, M. Toda: Bounds on performance of non stationary continuous-time filters under modeling uncertainty. Automatica 20 (1984), 1, 117-120.
[25] S. Sangsuk-Iam, T. Bullok: Analysis of continuous-time Kalman filtering under incorrect noise covariances. Automatica 24 (1988), 5, 659-669. MR 0966690
[26] S. Sangsuk-Iam, T. Bullok: Analysis of discrete-time Kalman filtering under incorrect noise covariances. IEEE Trans. Automat. Control 35 (1990), 12, 1304-1308. MR 1078143
[27] L. L. Scharf, D. L. Alspach: On stochastic approximation and an adaptive Kalman filter. In: Proc. of the IEEE Decision and Control Conference, 1972, pp. 253-257.
[28] N. K. Sinha: Adaptive Kalman filtering using stochastic approximation. Electr. Letters 9 (1973), 819, 177-178.
[29] N. K. Sinha, A. Tom: Adaptive state estimation systems with unknown noise covariances. Internat. J. Systems Sci. 8 (1977), 4, 377-384.
[30] D. A. Stratton, R. F. Stengel: Robust Kalman filter design for predictive wind shear detection. IEEE Trans. Aerospace Electron. Systems 29 (1993), 4, 1185-1193.
[31] M. Toda, R. V. Patel: Bounds on estimation errors of discrete-time filters under modeling uncertainty. IEEE Trans. Automat. Control 26 (1980), 6, 1115-1121. MR 0601493 | Zbl 0485.93068
[32] Ya. Z. Tsypkin: Foundations of Informational Identification Theory. Nauka, Moscow 1984 (in Russian). MR 0783831
[33] W. Vetter: Matrix calculus operations and Taylor expansions. SIAM Rev. 15 (1973), 2, 352-369. MR 0340513 | Zbl 0254.65033
[34] L. Xie, Y. Soh: Robust Kalman filtering for uncertain systems. Systems Control Lett. 22 (1994), 123-129. MR 1261851 | Zbl 0792.93118
Partner of
EuDML logo