[1] F. R. Gantmacher:
The Theory of Matrices. vol. 1. Chelsea, New York 1966.
MR 1657129
[3] W. Givens: Elementary divisors and some properties of the Lyapunov mapping $X \rightarrow AX + XA^*$. Argonne National Laboratory, Argonne, Illinois 1961.
[4] P. Hagander:
Numerical solution of $A^T S + SA + Q = 0$. Lund Institute of Technology, Division of Automatic Control, Lund, Sweden 1969.
MR 0312703
[5] V. Kučera:
The matrix equation AX + XB = C. SIAM J. Appl. Math. 26 (1974), 1, 15-25.
MR 0340280
[7] P. Lancaster:
Explicit solution of the matrix equations. SIAM Rev. 12 (1970), 544-566.
MR 0279115
[8] J. Štěcha A. Kozáčiková, J. Kozáčik:
Algorithm for solution of equations $PA + A^T P = -Q$ and $M^T PM - P= -Q$ resulting in Lyapunov stability analysis of linear systems. Kybernetika 9 (1973), 1, 62-71.
MR 0327355
[9] S. Barnett:
Remarks on solution of AX + XB = C. Electron. Lett. 7 (1971), p. 385.
MR 0319360
[10] C. S. Lu:
Solution of the matrix equation AX + XB = C. Electron. Lett. 7 (1971), 185-186.
MR 0319359
[11] C. S. Berger: A numerical solution of the matrix equation $P= \Phi P \Phi^T + S$. IEEE Trans. Automat. Control AC-16 (1971), 4, 381-382.
[12] A. Jameson:
Solution of the equation AX + XB = C by inversion of an M x M or N X N matrix. SIAM J. Appl. Math. 16 (1968), 1020-1023.
MR 0234974
[13] M. Záruba: The Stationary Solution of the Riccati Equation. (in Czech). ÚTIA ČSAV Research Report 371, Prague 1973.
[14] E. C. Ma:
A finite series solution of the matrix equation AX - XB = C. SIAM J. Appl. Math. 74 (1966), 490-495.
MR 0201456 |
Zbl 0144.27003
[15] E. J. Davison, F. T. Man:
The numerical solution of $A'Q + QA = - C$. IEEE Trans. Automat. Control AC-13 (1968), 4, 448-449.
MR 0235707
[16] A. Trampus:
A canonical basis for the matrix transormation $X \rightarrow AX+ XB$. J. Math. Anal. Appl. 14 (1966), 242-252.
MR 0190157
[17] J. Ježek: UTIAPACK - Subroutine Package for Problems of Control Theory. The User's Manual. ÚTIA ČSAV, Prague 1984.