Previous |  Up |  Next

Article

References:
[1] A. W. Starr Y., C. Ho: Nonzero-sum differential games. J. Optim. Theory. Applic. 3 (1969), 3, 184-206. MR 0249117 | Zbl 0169.12303
[2] A. W. Starr Y., C. Ho: Further properties of nonzero-sum differential games. J. Optim. Theory. Applic. 3 (1969), 4, 207-219. MR 0249118 | Zbl 0169.12303
[3] J. Marschak: Elements for a theory of teams. Management Science 1 (1955), 127-137. MR 0075521 | Zbl 0995.90544
[4] R. Radner: Team decision problems. Ann. Math. Statistics 33 (1962), 857-881. MR 0146937 | Zbl 0217.57103
[5] Y., C. Ho K., C. Chu: Team decision theory and information structures in optimal control problems - part I. IEEE Trans. Autom. Control AC-17 (1972), I, 15-22. MR 0359875
[6] K., C. Chu: Team decision theory and information structures in optimal control problems - part II. IEEE Trans. Autom. Control AC-17 (1972), 1, 22-28. MR 0359876
[7] R. Isaacs: Differential Games. A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. John Wiley and Sens, New York 1965. MR 0210469 | Zbl 0125.38001
[8] Y.-C. Ho A. E. Bryson Jr S. Baron: Differential games and optimal pursuit-evasion strategies. IEEE Trans Autom. Control AC-10 (1965), 4, 385-389. MR 0184747
[9] J. H. Case: Toward a theory of many player differential games. SIAM J. Control 7 (1969), 2, 179-197. MR 0249111 | Zbl 0176.39404
[10] D. L. Lukes D. L. Russel: A global theory for linear-quadratic differential games. J. Math. Anal. Applic. 33 (1971), 96-123. MR 0269324
[11] N. J. Krikelis Z. V. Rekasius: On the solution of the optimal linear control problems under conflict of interest. IEEE Trans. Autom. Control AC-16 (1971), 2, 140-147. MR 0290810
[12] T. Basar: A counterexample in linear quadratic games: Existence of nonlinear Nash solutions. J. Optim. Theory. Applic. 14 (1974), 4, 425-430. MR 0456552
[13] T. Basar: Nash strategies for M-person differential games with mixed information structures. Automatica 11 (1975), 5, 547-551. MR 0401190 | Zbl 0318.90066
[14] H. Stackelberg: Marktform und Gleichgewicht. Springer Verlag, Wien -Berlin 1934.
[15] C. I. Chen J. B. Cruz, Jr: Stackelberg solution for two-person games with biased information patterns. IEEE Trans. Autom. Control. AC-17 (1972), 6, 791-798.
[16] M. Simaan J. B. Cruz, Jr: On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory. Applic. 11 (1973), 5, 533-555. MR 0332207
[17] M. Simaan J. B. Cruz, Jr: Additional aspects of the Stackelberg strategy in nonzero-sum games. J. Optim. Theory. Applic. 11 (1973), 6, 613-627. MR 0368809
[18] M. Simaan J. B. Cruz, Jr: Sampled-data Nash controls in non-zero-sum differential games. Int. J. Control 77 (1973), 6, 1201-1209. MR 0327317
[19] M. Simaan J. B. Cruz, Jr: A Stackelberg solution for games with many players. IEEE Trans. Autom. Control. AC-18 (1973), 3, 322-324. MR 0441373
[20] Y. Nishikawa H. Itakura H. Kitagawa: Nonzero-sum differential games with nonlinear dynamics. Institute of Electronics and Communication Engineers of Japan, Tokyo. Report NLP 71-18, 1972.
[21] L. F. Pau: Differential games and a Nash equilibrium searching algorithm. SIAM J. Control 75 (1975), 4, 835-852. MR 0386720 | Zbl 0269.90062
[22] R. Mukundan W. B. Eisner: Linear feedback strategies in non-zero-sum differential games. Int. J. Systems Sci. 6 (1975), 6, 513-532. MR 0371427
[23] J. Doležal: Necessary optimality conditions forN-player nonzero-sum multistage games. Kybernetika 12 (1976), 4, 268-295. MR 0429152
[24] J. Doležal: Hierarchical solution concepts for static and multistage decision problems with two objectives. Kybernetika 12 (1976), 5, 363 - 385. MR 0449468
[25] R. P. Hämäläinen: Nash and Stackelberg solutions to general linear-quadratic two-player difference games. Part II. Open-closed strategies. Kybernetika, 14 (1978), to appear. MR 0479420
Partner of
EuDML logo