[1] H. T. Banks, F. Fahroo:
Legendre-Tau approximations for LQR feedback control of acoustic pressure fields. J. Math. Systems Estimation Control 5 (1995), 2, 271-274.
MR 1646277
[2] H. T. Banks, K. Ito:
A unified framework for approximations in inverse problems for distributed parameter systems. Control Theory Adv. Tech. 4 (1988), 73-90.
MR 0941397
[3] G. Chen:
A note on the boundary stabilization of the wave equation. SIAM J. Control Optim. 19 (1981), 106-113.
MR 0603083 |
Zbl 0461.93036
[4] G. Chen S. A. Fulling F. J. Narcowich, S. Sun:
Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51 (1991), 266-301.
MR 1089141
[5] G. Chen S. A. Fulling F. J. Narcowich, C. Qi:
An average asymptotic decay rate for the wave equation with variable coefficient viscous damping. SIAM J. Appl. Math. 49 (1990), 1341-1347.
MR 1061353
[6] G. Chen, J. Zhou: Vibration and Damping in Distributed Parameter Systems. Vol 1. CRC Press, Boca Raton, Fl 1993.
[7] R. Datko:
Extending a theorem of A. M. Liapunov to Hilbert space. J. Math. Anal. Appl. 32 (1970), 610-616.
MR 0268717 |
Zbl 0211.16802
[8] I. Ekeland, R. Temam:
Convex Analysis and Variational Problems. North Holland, Amsterdam 1976.
MR 0463994 |
Zbl 0322.90046
[9] F. Fahroo, K. Ito:
Variational formulation of optimal damping designs. In preparation.
Zbl 0931.49019
[10] K. Ito: The application of Legendre-Tau approximations to parameter identification for delay and partial differential equations. In: Proc. 22nd IEEE Conf. on Decision and Control, December 1983, pp. 33-37.
[11] J. E. Lagnese:
Decay of solutions of the wave equation in a bounded region with boundary dissipation. J. Differential Equations 50 (1983), 163-182.
MR 0719445
[12] A. Pazy:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York 1983.
MR 0710486 |
Zbl 0516.47023
[13] R. Triggiani:
On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52 (1975), 383-403.
MR 0445388 |
Zbl 0326.93023