[1] A.H.Algoet, T.M. Cover:
Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16 (1988), 876-898.
MR 0929084
[2] Z.Artstein, S. Hart:
Law of large numbers for random sets and allocation processes. Math. Oper. Res. 6 (1981), 485-492.
MR 0703091 |
Zbl 0524.28015
[3] A. R. Barron, T. M. Cover:
A bound on the financial value of information. IEEE Trans. Inform. Theory IT-34 (1988), 1097-1100.
MR 0982823 |
Zbl 0662.90023
[4] R. Bell, T.M. Cover:
Game-theoretic optimal portfolios. Management Sci. 34 (1988), 724-733.
MR 0943277 |
Zbl 0649.90014
[5] L. Breiman: Investment policies for expanding businesses optimal in a long-run sense. Naval Res.
[6] L. Breiman:
Optimal gambling systems for favorable games. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA 1961, pp. 65-78.
MR 0135630 |
Zbl 0109.36803
[7] T. M. Cover:
An algorithm for maximizing expected long investment return. IEEE Trans. Infrom. Theory IT-30 (1984), 369-373.
MR 0754868
[10] M. Finkelstein, R. Whitley:
Optimal strategies for repeated games. Adv. Appl. Probab. 13 (1981), 415-428.
MR 0612212 |
Zbl 0456.90100
[11] J. Kelly:
A new interpretation of information rate. Bell Sys. Tech. J. 35 (1956), 917-926.
MR 0090494
[12] A.J. King, R.J.-B. Wets:
Epi-consistency of convex stochastic programs. Stochastics Rep. 34 (1991), 83-92.
MR 1104423 |
Zbl 0733.90049
[13] G. Morvai:
Empirical log-optimal portfolio selection. Problems Control Inform. Theory 20 (1991), 453-463.
MR 1156460 |
Zbl 0752.90004
[14] R.T. Rockafellar:
Integral functionals, normal integrands and measurable selections. In: Nonlinear Operators and the Calculus of Variations (Gossez, ed., Lecture Notes in Mathematics). Springer- Verlag, Berlin - Heidelberg - New York 1976, pp. 157-207.
MR 0512209 |
Zbl 0374.49001
[15] R.J.-B. Wets:
Constrained estimation: consistency and asymptotics. Appl. Stochastic Models Data Anal. 7 (1991), 17-32.
MR 1105870 |
Zbl 0800.62187