Previous |  Up |  Next

Article

References:
[1] M. Kono: Decoupling and arbitrary coefficient assignment in time-delay systems. Systems Control Lett. 3 (1983), 6, 349-354. MR 0729116 | Zbl 0526.93027
[2] E. B. Lee, W. S. Lu: Coefficient assignability for linear systems with delays. IEEE Trans. Automat. Control AC-29 (1984), 11. MR 0764706 | Zbl 0561.93025
[3] E. B. Lee S. Neftci, A. W. Olbrot: Canonical forms for time-delay systems. IEEE Trans. Automat. Control AC-27 (1982), 1, 128-132. MR 0673080
[4] E. B. Lee, A. W. Olbrot: Observability and related structural results for linear hereditary systems. Internat. J. Control 34 (1981), 6, 1061-1078. MR 0643872 | Zbl 0531.93015
[5] D. G. Luenberger: Canonical forms for linear multivariable systems. IEEE Trans. Automat. Control AC-12 (1967), 3, 290-293. MR 0441429
[6] A. S. Morse: Ring models for delay differential systems. Automatica 12 (1976), 529-531. MR 0437162 | Zbl 0345.93023
[7] A. W. Olbrot: On controllability of linear systems with time delay in control. IEEE Trans. Automat. Control 17 (1972), 664-666. MR 0441425
[8] E. D. Sontag: Linear systems over commutative rings; a survey. Ricerche Automat. 7 (1976), 1.
[9] O. Sename J. F. Lafay, R. Rabah: Controllability indices of linear systems with delays. In: Proceedings of the 2nd IEEE Mediterranean Symposium on New Directions in Control and Automation, 1994, Maleme-Chania, Crete, Greece.
[10] A. C. Tsoi: Recent advances in the algebraic system theory of delay differential equations. In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, 1978, pp. 67-127. MR 0534622 | Zbl 0417.93003
[11] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1979. MR 0569358 | Zbl 0424.93001
[12] L. Weiss: An algebraic criterion for controllability of linear systems with time-delay. IEEE Trans. Automat. Control 15 (1970), 443-444. MR 0282701
Partner of
EuDML logo