[1] F. Amato, A. Pironti: A note on singular zero-sum linear quadratic differential games. In: Proceedings of the 33rd IEEE Conference or. Decision and Control, Orlando 1994.
[2] T. Basar, G. J. Olsder:
Dynamic Noncooperative Game Theory. Academic Press, New York 1989.
MR 1311921
[3] S. Butman:
A method for optimizing control-free costs in systems with linear controllers. IEEE Trans. Automat. Control 13 (1968), 554-556.
MR 0238585
[4] J. W. Helton M. L. Walker, W. Zhan: ${\cal H}^\infty$ control using compensators with access to the command signals. In: Proceedings of the 31st Conference on Decision and Control, Tucson 1992.
[5] D. J. N. Limebeer B. D. O. Anderson P. P. Khargonekar, M. Green:
A game theoretic approach to ${\cal H}^\infty$ control for time-varying systems. SIAM J. Control Optim. 30 (1992), 262-283.
MR 1149068
[6] R. Ravi K. M. Nagpal, P. P. Khargonekar:
${\cal H}^\infty$ control of linear time-varying systems: a state space approach. SIAM J. Control Optim. 29 (1991), 1394-1413.
MR 1132188
[7] J. L. Speyer, D. H. Jacobson:
Necessary and sufficient condition for optimality for singular control problem. J. Math. Anal. Appl. 33 (1971).
MR 0272469
[8] A. A. Stoorvogel, H. Trentelman:
The quadratic matrix inequality in singular ${\cal H}^\infty$ control with state feedback. SIAM J. Control Optim. 28 (1990), 1190-1208.
MR 1064725
[9] G. Tadmor:
Worst-case design in time domain: the maximum principle and the standard ${\cal H}^\infty$ problem. Math. Control Signals Systems 3 (1990), 301-324.
MR 1066375