[1] S. Arimoto:
Information theoretical considerations on estimation problems. Information and Control 19 (1971), 181-184.
MR 0309224 |
Zbl 0222.94022
[2] P. Billingsley:
Hausdorff dimension in probability theory. Illinois Journ. of Math. 4 (1960), 190.
MR 0131903 |
Zbl 0098.10602
[3] F. Hausdorff:
Dimension und Äusseres. Mass. Math. Ann. 79 (1919), 157-179.
MR 1511917
[5] J. Havrda F. Charvát:
Quantification method of classification processes, concept of structural a-entropy. Kybernetika / (1967), 3, 30-35.
MR 0209067
[6] J. Hawkes:
Hausdorff measure, entropy and the independance of small sets. Proc. London Math. Soc. (3) 23 (1974), 700-724.
MR 0352412
[7] D. P. Mittal: New non-additive measures of entropy for a discrete probability distribution. (Conferences on measures of information and their applications, held in I. T. T. Bombay, 16-18 August 1974.)
[8] C. F. Picard: A propose des informations de type $\alpha$. Publication C.N.R.S. Structures de l'Information, n° 3, 1975.
[9] A. Rényi:
On measures of informations and entropy. Proc. 4 Berkeley Symp. Math. Statist., Probability, 1960, 1, 547 - 561. University of California Press, 1961.
MR 0132570
[10] J. Sallantin: Approche commune de différents modeles en théorie de l'information. Developpements récents de la Théorie de l'information et ses applications. Colloque International du C.N.R.S., n° 276, 1977.
[12] Th. Van der Pyl: Information d'ordre $\alpha$ et de type $\beta$: axiomatique, proprietes. Thèse 3° Cycle, Université Paris VI, 1977.