Previous |  Up |  Next

Article

References:
[1] R. A. Adams: Sobolev Spaces. Academic Press, New York 1975. MR 0450957 | Zbl 0314.46030
[2] N. V. Banichuk: Problems and Methods of Optimal Structural Design. Plenum Press, New York 1983. MR 0715778
[3] M. S. Berger: On von Kármán's equations and the buckling of a thin elastic plate. I. The clamped plate. Comm. Pure Appl. Math. 20 (1967), 687-719. MR 0221808 | Zbl 0162.56405
[4] D. Begis, R. Glowinski: Application de la metode des elements finis a ľapproximation ďun probleme de domaine optimal. Appl. Math. Optim. 2 (1975), 130-169. MR 0443372
[5] I. Bock I. Hlaváček, I. Lovíšek: On the optimal control problem governed by the equation of von Kármán. Apl. mat. 30 (1985), 375-392. MR 0806834
[6] F. Brezzi: Finite element approximation of the von Kármán equations. RAIRO Numer. Anal. 12 (1978), 303-312. MR 0519014
[7] J. Cea: Opimisation. Theorie et Algorithmes. Dunod, Paгis 1971. MR 0298892
[8] D. Chenais: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975), 189-219. MR 0385666 | Zbl 0317.49005
[9] D. Chenais: Optimal design of midsurface of shells: differentiability proof and sensitivity computation. Appl. Math. Optim. 16 (1987), 93-133. MR 0894807 | Zbl 0626.73097
[10] D. Chenais, B. Rousselet: Dependence of the buckling load of a nonshallow arch with respect to the shape of its midcurve. RAIRO Modél. Math. Anal. Numér. 24 (1990), 3, 307-341. MR 1055303 | Zbl 0708.73033
[11] Ph. Ciarlet, P. Rabier: Les equations de von Kármán. (Lecture Notes in Mathematics 826.) Springer-Verlag, Berlin 1980. MR 0595326 | Zbl 0433.73019
[12] M. C. Delfour, J. P. Zolesio: Velocity method and Lagrangian formulation for the computation of the shape hessian. SIAM J. Control Optim. 29 (1991), 6, 1414-1442. MR 1132189 | Zbl 0747.49007
[13] N. Fujii: Necessary conditions for a domain optimization problem in elliptic boundaгy value problems. SIAM J. Contгol Optim. 24 (1986), 346-360. MR 0838044
[14] E. J. Haug K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems. Academic Press, New York 1986. MR 0860040
[15] J. Haslinger, P. Neittaanmäki: Finite Element Approximation for Optimal Shape Design. Theoгy and Applications. J. Wiley, New York 1988. MR 0982710
[16] T. Masano, N. Fujii: Second order necessary conditions for domain optimization problems in elastic structures. J. Optim. Theory Appl. 72 (1992), 2, 355-401. MR 1143202
[17] K. Maurin: Functional Analysis. (in Polish). Polish Scientific Publisher, Warsaw 1978.
[18] S. G. Michlin: Variational Methods of Mathematical Physics. (in Russian). Mir, Moscow 1970.
[19] A. Myslinski: Finite element approximation of a shape optimization problem for von Kármán system. Numer. Funct. Anal. Optim. 10 (1989), 7 &: 8, 691-717. MR 1019489 | Zbl 0667.73069
[20] A. Myslinski: Mixed variational approach for shape optimization in contact problem with prescribed friction. In: Numerical Methods in Free Boundary Problems (P. Neittaanmäki ed.), Birkhäuser, Basel 1991, pp. 286-296. MR 1118872 | Zbl 0756.73063
[21] A. Myslinski: Minimax shape optimization problem for von Kármán system. In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds., Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Beгlin 1990, pp. 164-173. MR 1070730
[22] A. Myslinski, J. Sokolowski: Nondifferentiable optimization pгoblems for elliptic systems. SIAM J. Control Optim. 23 (1985), 632-648. MR 0791892
[23] O. Pironneau: Optimal Shape Design for Elliptic Systems. (Springer Series in Computational Physics.) Springer-Verlag, New York 1984. MR 0725856 | Zbl 0534.49001
[24] J. Sokolowski, J. P. Zolesio: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag, Berlin 1992. MR 1215733 | Zbl 0761.73003
[25] J. Sokolowski, J. P. Zolesio: Shape sensitivity analysis of contact, problems with prescribed friction. Nonlinear Theory, Methods, & Applications 12 (1988), 1399-1411. MR 0972408
Partner of
EuDML logo