[1] A. Banaszuk M. Kociecki, K. M. Pryluski: Remarks on duality between observation and control for implicit linear discrete-time systems. In: Proceedings of IFAC Workshop System Structure and Control, Prague 1989, pp. 257-260.
[2] U. Baser, K. Ozgaldiran:
Observability and regularizability by output injection of the descriptor systems. Circuits Systems Signal Process. 11 (1992), 3, 421-430.
MR 1162990
[3] M. E. Bonilla, M. Malabre: Non observable and redundant spaces for implicit descriptions. In: Proceedings of 30th CDC, Brighton, England, pp. 1425-1430.
[4] J. D. Cobb:
Controllability, observability and duality in singular systems. IEEE Trans. Automat. Control AC-26 (1984), 1076-1082.
MR 0771396
[5] G. Doetsch:
Introduction to the Theory and Application of the Laplace Transformation. Springer-Verlag, Berlin 1974.
MR 0344810 |
Zbl 0278.44001
[6] L. Haliloglu: Reachabililty, controllability and observability in generalized linear time-invariant systems. M.S. Thesis, Dept. Elect. Engng., Bogazicj University, Istanbul 1991.
[7] F. L. Lewis:
A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28(1992), 1, 119-137.
MR 1144115 |
Zbl 0745.93033
[8] M. Malabre:
Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. 122-124 (1989), 591-621.
MR 1020003 |
Zbl 0679.93048
[9] K. Ozcaldiran: Control of Descriptor Systems. Ph. D. Thesis, Georgia Institute of Technology, Atlanta, Ga. 1985.
[10] K. Ozgaldiran:
A geometric characterization of the reachable and controllable subspaces of descriptor systems. Circuits Systems Signal Process. 5 (1986), 37-48.
MR 0893726
[11] K. Ozgaldiran: A complete classification of controllable singular systems. Preprint, 1989.
[12] K. Ozcaldiran, F. L. Lewis:
On the regularizability of singular systems. IEEE Trans. Automat. Control AC-35 (1990), 1156-1160.
MR 1073262
[13] K. Ozcaldiran: Some generalized notions of observability. In: Proceedings of the 29th CDC, Honolulu, Hawai 1990, pp. 3635-3639.
[15] J.C. Willems:
Almost invariant subspaces: An approach to high gain feedback design. Part I: Almost controlled invariant subspaces. IEEE Trans. Automat. Control AC-26 (1981), 235-252.
MR 0609263
[16] A. H. Zemanian:
Distribution Theory and Transform Analysis. Dover Publications, New York 1965.
MR 0918977 |
Zbl 0127.07201