[1] R. E. Kalman:
On partial realizations, transfer functions and canonical forms. Acta Polytech. Scand. Math. Comput. Sci. Ser. 31 (1978), 9-32.
MR 0557691
[2] J. C. Willems:
Models for dynamics. Dynamics reported 2 (1988), 171-269.
MR 1000978
[3] C. Heij:
Exact modelling and identifiability of linear systems. Automatica 28 (1992), 325-344.
MR 1157004 |
Zbl 0766.93003
[4] S. Sakata:
Finding a minimal set of linear recurring relations capable of generating a given two-dimensional array. J. Symbolic Computat. 5 (1988), 321-337.
MR 0946587
[5] S. Sakata:
A Gröbner basis and a minimal polynomial set of a finite $nd$ array. (Lecture Notes in Computer Science 508, S. Sakata, ed.), Springer, Berlin 1990, pp. 280-291.
MR 1123958
[6] P. Rocha: Structure and Representation of 2-D Systems. PhD Dissertation, University of Groningen, 1990.
[7] P. Rocha, J. C. Willems: Canonical computational forms for AR 2-D systems. Multidimensional Systems and Signal Processing 2 (1990), 251-278.
[8] B. Buchberger: Gröbner basis: An algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory (N. K. Bose, ed.), D. Reidel, 1985, pp. 184-232.