[1] H. P. Barendregt:
The Lambda Calculus. Its syntax and semantics. (Studies in Logic and the Foundations of Mathematics 103.), North-Holland, Amsterdam 1981.
MR 0622912 |
Zbl 0467.03010
[2] A. Church:
A formulation of the simple theory of types. J. Symb. Logic 5 (1948), 1, 56-68.
MR 0001931
[3] A. Church:
The Calculi of $\lambda$-conversion. (Annals of Mathematics Studies No. 6.), Princeton University Press, Princeton 1941 (1951).
MR 0005274 |
Zbl 0026.24205
[4] R. O. Gandy:
An early proof of normalization by A. M. Turing. In: To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism (J. R. Hindley, J. P. Seldin, eds.), Academic Press, London 1980, pp. 453 - 456.
MR 0592814
[5] R. O. Gandy:
Proofs of strong normalization. In: [4], pp. 457-477.
MR 0592815
[6] M. H. A. Newman:
On theories with a combinatorial definition of "equivalence". Ann. of Math. (2), 43 (1942), 223-243.
MR 0007372 |
Zbl 0060.12501
[7] D. S. Scott:
Lectures on a Mathematical Theory of Computation. Oxford University Computing Laboratory, Technical Monograph PRG-19, 1981.
MR 0696963
[8] D. S. Scott:
Relating theories of the $\lambda$-calculus. In: [4], pp. 403 - 450.
MR 0592813
[9] A. S. Troelstra (ed.):
Metamathematical Investigations of Intuitionistic Arithmetic and Analysis. (Lecture Notes in Mathematics 344). Springer-Verlag, Berlin 1973.
MR 0325352
[10] J. Zlatuška: HIT data model. Data bases from the functional point of view. In: Proc. 11th VLDB (A. Pirotte, Y. Vassiliou, eds.), Stockholm 1985, pp. 470-477.