Previous |  Up |  Next

Article

References:
[1] M. B. Bell, F. W. Cathey: The iterated Kalman filter update as a Gauss-Newton method. IEEE Trans. Automat. Control 38 (1993), 2, 294-297. MR 1206815 | Zbl 0775.93237
[2] D. E. Catlin: Estimation, Control, and the Discrete Kalman Filter. Springer-Verlag, New York 1989. MR 0968437 | Zbl 0685.93001
[3] S. D. Conte, C. de Boor: Elementary Numerical Analysis. McGraw- Hill, Singapore 1987.
[4] A. Gelb: Applied Optimal Estimation. MIT Press, Cambridge, Massachusetts 1974. MR 0345688
[5] Y. Hosoya, M. Taniguchi: A central limit theorem for stationary processes and the parameter estimation of linear processes. Ann. Statist. 10 (1982), 1, 132-153. MR 0642725 | Zbl 0484.62102
[6] D. Kincaid, W. Cheney: Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole Publishing Company, California 1990. MR 1388777
[7] L. Ljung: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automat. Control AC-24 (1979), 1, 36-50. MR 0519391 | Zbl 0399.93054
[8] N. E. Nahi: Estimation Theory and Applications. Wiley, New York 1969.
[9] M. D. Smooke: Error estimate for the modified Newton method with application to the solution of nonlinear, two-point boundary-value problems. J. Optim. Theory Appl. 39 (1983), 4, 489-511. MR 0703817
[10] F. Szidarovszky, S. Yakowitz: Principles and Procedures of Numerical Analysis. Plenum Press, New York 1978. MR 0514705 | Zbl 0416.65001
Partner of
EuDML logo