Previous |  Up |  Next

Article

References:
[1] J. Hájek: Some extensions of the Wald-Wofowitz-Noether theorem. Ann. Math. Statist. 32 (1961), 506-523. MR 0130707
[2] J. Hájek: Asymptotically most powerful rank order tests. Ann. Math. Statist. 33 (1962), 1124-1147. MR 0143304
[3] J. Hájek: Extension of the Kolmogorov-Smirnov test to the regression alternatives. Bernoulli-Bayes-Laplace. In: Proc. Internat. Research Seminar (J. Neyman and L. LeCam, eds.), Springer-Verlag, Berlin 1965, pp. 45-60. MR 0198622
[4] J. Hájek: Locally most powerful tests of independence. In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 45-51. MR 0233473
[5] J. Hájek: Some new results in the theory of rank tests. In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 53-55. MR 0231501
[6] J. Hájek: Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math. Statist. 39 (1968), 325-346. MR 0222988
[7] J. Hájek: A Course in Nonparametric Statistics. Holden-Day, San Francisco 1969. MR 0246467
[8] J. Hájek: Miscellaneous problems of rank test theory. In: Nonparam. Techniques in Statist. Inference (M.L. Puri, ed.), Cambridge Univ. Press 1970, pp. 3-19. MR 0279947
[9] J. Hájek: Asymptotic sufficiency of the vector of ranks in the Bahadur sense. Ann. Statist. 2 (1974), 75-83. MR 0356355
[10] J. Hájek, Z. Šidák: Theory of Rank Tests. Academia, Prague and Academic Press, New York 1967. (Russian translation: Nauka, Moscow 1971.) MR 0229351
[11] J. Hájek, V. Dupač: Asymptotic normality of simple linear rank statistics under alternatives II. Ann. Math. Statist. 40 (1969), 1992-2017. MR 0253487
[12] J. Hájek, V. Dupač: Asymptotic normality of the Wilcoxon statistic under divergent alternatives. Zastos. Mat. 10 (1969), 171-178. MR 0258171
[13] H. Chernoff, I. R. Savage: Asymptotic normahty and efficiency of certain nonparametric test statistics. Ann. Math. Statist. 29 (1958), 972-994. MR 0100322
[14] M. D. Donsker: Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952), 277-281. MR 0047288 | Zbl 0046.35103
[15] J. L. Doob: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 20 (1949), 393-403. MR 0030732 | Zbl 0035.08901
[16] M. Driml: Convergence of compact measures on metric spaces. In: Trans. 2nd Prague Conference on Inform. Theory, NČSAV, Prague 1959, pp. 71-92. MR 0125929
[17] M. Dwass: On the asymptotic normahty of certain rank order statistics. Ann. Math. Statist. 24 (1953), 303-306. MR 0055628
[18] M. Dwass: On the asymptotic normahty of some statistics used in non-parametric setup. Ann. Math. Statist. 26 (1955), 334-339. MR 0069447
[19] Z. Govindarajulu L. LeCam, M. Raghavachari: Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics. In: Proc. 5th Berkeley Symp. Math. Statist. Probab. 1 (1966), pp. 609-638. MR 0214193
[20] C. Gutenbrunner, J. Jurečková: Regression rank scores and regression quantiles. Ann. Statist. 20 (1992), 305-330. MR 1150346
[21] C. Gutenbrunner J. Jurečková R. Koenker, S. Portnoy: Tests of linear hypotheses based on regression rank scores. J. Nonpar. Statist. 2 (1993), 307-331. MR 1256383
[22] W. Hoeffding: A combinatorial central hmit theorem. Ann. Math. Statist. 22 (1951) 558-566. MR 0044058
[23] J. Jurečková: Uniform asymptotic linearity of regression rank scores process. In: Nonpar. Statist. Rel. Topics (A. K. Md. E. Saleh, ed.), Elsevier Sci. Publ. 1992, pp. 217-228. MR 1226726
[24] J. Jurečková: Tests of Kolmogorov-Smirnov type based on regression rank scores. In: Trans. 11th Prague Conference on Inform. Theory (J.A.Visek, ed.), Academia, Prague and Kluwer Acad. Publ. 1992, pp. 41-49.
[25] R. Koenker, G. Bassett: Regression quantiles. Econometrica 46 (1978), 33-50. MR 0474644 | Zbl 0373.62038
[26] M. Motoo: On the Hoeffding's combinatorial central limit theorem. Ann. Inst. Statist. Math. 5 (1957), 145-154. MR 0089560 | Zbl 0084.13802
[27] G. E. Noether: On a theorem of Wald and Wolfowitz. Ann. Math. Statist. 20 (1949), 455-458.
[28] Ju. V. Prochorov: Convergence of stochastic processes and limiting theorems of probability theory. Theory Probab. 1 (1956), 177-238.
[29] R. Pyke, G. R. Shorack: Weak convergence of a two-sample empirical process and anew approach to Chernoff-Savage theorems. Ann. Math. Statist. 59(1968), 755-771.
[30] M. Raghavachari: On a theorem of Bahadur on the rate of convergence of tests statistics. Ann. Math. Statist. 41 (1970), 1695-1699.
[31] D. Ruppert, R. J. Carroll: Trimmed least squares estimation in the linear model. J. Amer. Statist. Assoc. 15 (1980), 828-838. Zbl 0459.62055
[32] A. Wald, J. Wolfowitz: Statistical tests based on permutations of the observations. Ann. Math. Statist. 15 (1944), 358-372. Zbl 0063.08124
[33] G. Woodworth: Large deviations and Bahadur efficiency in linear rank statistic. Ann. Math. Statist. 41 (1970), 251-283.
Partner of
EuDML logo