[1] E. Emre:
The polynomial equation $QQ_C + RP_C = \Phi$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 6, 611-620.
MR 0592921
[2] E. Emre, L. M. Silvermann:
The equation $XR + QY = \Phi$: A characterization of solutions. SIAM J. Control Optim. 19 (1981), 1, 33-38.
MR 0603078
[3] M. J. Grimble: Design of stochastic optimal feedback control systems. Proc. IEEE 125 (1978), II, 1275-1284.
[5] V. Kučera:
Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979.
MR 0573447
[6] V. Kučera:
Stochastic multivariable control: A polynomial equation approach. IEEE Trans. Automat. Control AC-25 (1980), 5, 913-919.
MR 0595225
[8] M. Šebek:
Polynomial design of stochastic tracking systems. IEEE Trans. Automat. Control AC-27 0982), 2, 468-470.
MR 0680118
[9] M. Šebek:
Direct polynomial approach to discrete-time stochastic tracking. Problems Control Inform. Theory 12 (1983), 4, 293-300.
MR 0729282
[10] Z. Vostrý:
New algorithm for polynomial spectral factorization with quadratic convergence. Kybernetika 12 (1976), 4, 248-259.
MR 0423782
[12] D. C. Youla J. J. Bongiorno, H. A. Jabr:
Modern Wiener-Hopf design of optimal controllers. II: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 3, 319-338.
MR 0446637