Previous |  Up |  Next

Article

References:
[1] E. Emre: The polynomial equation $QQ_C + RP_C = \Phi$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 6, 611-620. MR 0592921
[2] E. Emre, L. M. Silvermann: The equation $XR + QY = \Phi$: A characterization of solutions. SIAM J. Control Optim. 19 (1981), 1, 33-38. MR 0603078
[3] M. J. Grimble: Design of stochastic optimal feedback control systems. Proc. IEEE 125 (1978), II, 1275-1284.
[4] T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, N. J. 1980. MR 0569473 | Zbl 0454.93001
[5] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979. MR 0573447
[6] V. Kučera: Stochastic multivariable control: A polynomial equation approach. IEEE Trans. Automat. Control AC-25 (1980), 5, 913-919. MR 0595225
[7] H. Kwakernaak, R. Sivan: Linear Optimal Control Systems. Wiley, New York 1972. MR 0406607 | Zbl 0276.93001
[8] M. Šebek: Polynomial design of stochastic tracking systems. IEEE Trans. Automat. Control AC-27 0982), 2, 468-470. MR 0680118
[9] M. Šebek: Direct polynomial approach to discrete-time stochastic tracking. Problems Control Inform. Theory 12 (1983), 4, 293-300. MR 0729282
[10] Z. Vostrý: New algorithm for polynomial spectral factorization with quadratic convergence. Kybernetika 12 (1976), 4, 248-259. MR 0423782
[11] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. MR 0359881 | Zbl 0291.93002
[12] D. C. Youla J. J. Bongiorno, H. A. Jabr: Modern Wiener-Hopf design of optimal controllers. II: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 3, 319-338. MR 0446637
Partner of
EuDML logo