[1] D. P. Bertsekas:
Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, N. J. 1987.
MR 0896902 |
Zbl 0649.93001
[2] D. P. Bertsekas, S. E. Shreve:
Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1978.
MR 0511544 |
Zbl 0471.93002
[4] D. Blackwell:
Memoryless strategies in finite-stage dynamic programming. Ann. Math. Statist. 35 (1964), 863-865.
MR 0162642 |
Zbl 0127.36406
[6] V. S. Borkar:
Control of Markov chains with long-run average cost criterion: the dynamic programming equations. SIAM J. Control Optim. 27 (1989), 642-657.
MR 0993291 |
Zbl 0668.60059
[7] R. Cavazos-Cadena:
Solution to the optimality equation in a class of average Markov decision chains with unbounded costs. Kybernetika 27 (1991), 23-37.
MR 1099512
[8] J. Diebolt, D. Guegan: Probabilistic properties of the general nonlinear markovian process of order one and applications to time series modelling. Rapport Technique No. 125, Laboratoire de Statistique Theorique et Appliquee, CNR-URA 1321, Universite Paris VI, 1990.
[11] E. B. Dynkin, A. A. Yushkevich:
Controlled Markov Processes. Springer - Verlag, Berlin 1979.
MR 0554083
[12] R. Hartley: Dynamic programming and an undiscounted, infinite horizon, convex stochastic control problem. In: Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas and D.J. White, eds.). Academic Press, London 1980, pp. 277-300.
[13] O. Hernandez-Lerma:
Lyapunov criteria for stability of differential equations with Markov parameters. Boletin Soc. Mat. Mexicana 24 (1979), 27-48.
MR 0579667 |
Zbl 0486.60051
[14] O. Hernandez-Lerma:
Adaptive Markov Control Processes. Springer - Verlag, New York 1989.
MR 0995463 |
Zbl 0698.90053
[15] O. Hernandez-Lerma:
Average optimality in dynamic programming on Borel spaces - unbounded costs and controls. Syst. Control Lett. 17 (1991), 237-242.
MR 1125975 |
Zbl 0771.90098
[16] O. Hernandez-Lerma, J. B. Lasserre:
Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Syst. Control Lett. 15 (1990), 349-356.
MR 1078813 |
Zbl 0723.93080
[17] O. Hernandez-Lerma, J. B. Lasserre:
Linear programming and average optimality of Markov control processes on Borel spaces - unbounded costs. Rapport LAAS, LAAS-CNRS, Toulouse 1992. To appear in SIAM J. Control Optim.
MR 1261150
[18] O. Hernandez-Lerma R. Montes de Oca, R. Cavazos-Cadena:
Recurrence conditions for Markov decision processes with Borel state space: a survey. Ann. Oper. Res. 28 (1991), 29-46.
MR 1105165
[19] K. Hinderer:
Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin 1970.
MR 0267890 |
Zbl 0202.18401
[20] M. Yu. Kitayev:
Semi-Markov and jump Markov control models: average cost criterion. Theory Probab. Appl. 30 (1985), 272-288.
MR 0792619
[21] M. Kurano:
The existence of a minimum pair of state and policy for Markov decision processes under the hypothesis of Doeblin. SIAM J. Control Optim. 27 (1989), 296-307.
MR 0984830 |
Zbl 0677.90085
[22] H. J. Kushner:
Introduction to Stochastic Control. Holt, Rinehart and Winston, New York 1971.
MR 0280248 |
Zbl 0293.93018
[23] A. Leizarowitz:
Optimal controls for diffusions in $R^n$. J. Math. Anal. Appl. 149 (1990), 180-209,
MR 1054802
[24] S. P. Meyn:
Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function. SIAM J. Control Optim. 27 (1989), 1409-1439.
MR 1022436 |
Zbl 0681.60067
[25] A. Mokkadem:
Sur un modele autoregressif nonlineaire. Ergodicite et ergodicite geometrique. J. Time Series Anal. 8 (1987), 195-205.
MR 0886138
[27] U. Rieder:
Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 507-518.
MR 0493590 |
Zbl 0385.28005
[28] V. I. Rotar, T. A. Konyuhova: Two papers on asymptotic optimality in probability and almost surely. Preprint, Central Economic Mathematical Institute (CEMI), Moscow 1991.
[29] R. H. Stockbridge:
Time-average control of martingale problems: a linear programming formulation. Ann. Probab. 18 (1990), 206-217.
MR 1043944 |
Zbl 0699.49019
[30] J. Wijngaard:
Existence of average optimal strategies in markovian decision problems with strictly unbounded costs. In: Dynamic Programming and Its Applications (M. L. Puterman, ed.), Academic Press, New York 1978, pp. 369-386.
MR 0537889 |
Zbl 0458.90081