[1] A. Špaček:
Statistical Estimation of Probability in Boolean Logics. In: Transactions of the Second Prague Conference on Information Theory. Prague 1960, 609-626.
MR 0123477
[2] A. Špaček: Statistical Estimation of Semantic Probability. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics, 1960, vol. 1, 655-688.
[3] I. Kramosil:
Statistical Estimation of Deducibility in Polyadic Algebras. Kybernetika 7 (1971), 3, 181-200.
MR 0300881 |
Zbl 0216.29502
[4] I. Kramosil:
A Method for Random Sampling of Well-Formed Formulas. Kybernetika 8 (1972), 2, 133-148.
MR 0343414 |
Zbl 0242.02014
[5] A. Chirch: A note on the Entscheidungsproblem. The Journal of Symbolic Logic 1, (1936), 40-41.
[6] J. A. Robinson:
Theorem-proving on the Computer. Journal of the Assoc. for Comput. Mach. 10 (1963), 163-174.
MR 0149693 |
Zbl 0109.35603
[8] Gentzen G.:
Untersuchungen über das logische Schliessen. Math. Zeit. 39 (1934-35), 176-210.
Zbl 0010.14601
[9] W. Craig:
Linear Reasoning - a New Form of Herbrand - Gentzen Theorem. The Journal of Symboic Logic 22 (1957), 250-268.
MR 0104564
[11] S. W. Szczerba:
Semantic Method of Proving Theorems. Bull. de ľAcademie Polonaise des Sciences. Serie des sciences math., astr. et phys. 18 (1970), 9, 507-512.
MR 0274257 |
Zbl 0212.03003
[12] J. A. Robinson:
A Machine Oriented Logic Based on the Resolution Principle. J. Assoc. Comput. Mach. 12 (1965), 23-41.
MR 0170494 |
Zbl 0139.12303
[1З] J. A. Robinson:
The Generalized Resolution Principle. Machine Intelligence 3, Edinburgh University Press, 1968, 77-93.
Zbl 0195.31102
[14] S. Ju. Masłov:
The Inverse Method for Establishing Deducibility for Logical Calculi. Trudy Matem. Inst. Steklov. Translation: Proc. Steklov Inst. Math. 98, (1968), 26-87.
MR 0252195
[15] Maslov S. Ju.:
An Inverse Method of Establishing Deducibility of Non-prenex Formulas of the Predicate Calculus. Translation: Soviet Math. Dokl. 8 (1967), 1, 16-19.
MR 0209115
[16] R. Kowalski: An Exposition of Paramodulation with Refinements. Department of Computational Logic, University of Edinburgh, 1968.
[17] J. A. Robinson S. Wos:
Paramodulation and Theorem-Proving in First-Order Theories with Equality. Machine Intelligence 4 (1969), Edinburgh Uпiversity Press, 135-150.
MR 0275720
[18] S. C. van Westrhenen:
Statistical Studies of Theoremhood in Classical Propositional and First-Order Predicate Calculus. J. Assoc. Comp. Mach. 19 (1972), 2, 347-365.
MR 0297524 |
Zbl 0246.68017
[19] S. Ju. Masłov E. D. Rusakov:
Probabilistic Canonical Systems. Translation: Seminars in Mathematics V. A. Steklov Math. Inst., Leningrad, 32 (1972), 66-76.
MR 0344089
[20] B. A. Trachtenbrot: Složnosť algoritmov i vyčislenij. Novosibirsk 1967.
[21] G. S. Tseitin: On the complexity of Derivation in Propositional Calculus. Seminars in Mathematics V. A. Steklov Math. Inst., Leningrad, 8 (1970), 115-125.
[22] S. Ju. Masłov: Relationship Between Tactics of the Inverse Method and the Resolution Method. Ibid, 16 (1971), 69-73.
[23] D. G. Kuehner D. G.:
A Note on the Relation Between Resolution and Masłov's Inverse Method. Machine Intelligence 6, Edinburgh University Press, 1971, 73-76.
Zbl 0263.68049
[24] Orłowska E.: Theorem-proving systems. Dissertationes Mathematicae. PWN, Warszawa 1973.
[25] M. Loève:
Probability Theory. Second Edition. D. van Nostrand Comp., Princeton, New Jersey-Toronto-New York-London 1961.
MR 0123342
[26] B. V. Gnedenko: Kurs teoriji verojatnostej. Third Edition, Firmatgiz, Moskva 1961.
[27] A. Walde:
Sequential Analysis. Russian Translation: Fizmatgiz, Moskva 1960.
MR 0116440
[28] E. L. Lehman: Statistical Hypotheses Testing. Russian Translation. Nauka, Moskva 1964.