Previous |  Up |  Next

Article

References:
[1] T. W. Anderson: An Introduction to Multivariate Statistical Analysis. John Wiley, New York 1958. MR 0091588 | Zbl 0083.14601
[2] G. Biswas A. K. Jain, R. Dubes: Evaluation of projection algorithms. IEEE Trans. Pattern Anal. Machine Intell. 3 (1981), 701-708.
[3] S. Bláha P. Pudil, R. Pecinovský: Classification by sequential discriminative rule and its optimization by measure of discriminative power. In: Proceedings of DIANA - Conf. of Discr. Anal., CІuster Anal. and Others Methods on Data CІass, Liblice 1982, pp. 277-284.
[4] S. Bláha, P. Pudil: A general approach to diagnostic problem solution by means of pattern recognition. Problems Control Inform. Theory 13 (1984), 3, 192-208.
[5] S. Bláha, P. Pudil: The PREDITAS system and its use for computer-aided medical decision making. In: Medical Decision Making: Diagnostic Strategies and Expert Systems (J. H. Van Bemmel, F. Grćmy, J. Zvárová, eds.), North-Holland, Amsterdam 1985, pp. 215-218.
[6] S. Bláha J. Novovičová, P. Pudil: Solution of Pattern Recognition Problem by Means of the PREDITAS Program System. Part L: Dichotomic Classification - Theoretical Background, Research Report ÚTIA ČSAV No. 1549, Prague 1988.
[7] S. Bláha J. Novovičová, P. Pudil: Solution of Pattern Recognition Problem by Means of the PREDITAS Program System. Part II.: Feature Selection and Extraction Principles and Used Methods. Research Report ÚTIA ČSAV No. 1555, Prague 1988.
[8] S. Bláha J. Novovičová an P. Pudil: Solution of Pattern Recognition Problem by Means of the PREDITAS Program System. Part III: Sample-Based Classification Procedures. Research Repoгt ÚTIA ČSAV No. 1593, Prague 1989.
[9] S. Bláha P. Pudil, F. Patočka: Program system PREDITAS and its application in geology (in Czech). In: Proceedings of International Symposium Mathematical Methods in Geology, Příbram 1989, pp. 6-17.
[10] C K. Chow: An optimum character recognition system using decision functions. IRE Trans. Electronic Computers EC-6 (1957), 6, 247-254. MR 0092339
[11] C K. Chow: On optimum ґecognition error and reject tradeoff. IEEE Tґans. Inform. Theory IT-16 (1970), 1, 41-46.
[12] T. M. Covei, J. M. Van Campenhout: On the possible orderings in the measurement selection problem. IEEE Trans. Systems, Man Cybernet. 7 (1977), 657-661. MR 0521227
[13] H. P. Decell, L. T. Guseman: Linear feature selection with applications. Pattern Recognition 11 (1979) 55-63. MR 0552248 | Zbl 0412.62040
[14] P. A. Devijver, J. Kittler: Pattern Recognition - A Statistical Approach. Prentice-Hall, Engelwood Cliffs 1982. MR 0692767 | Zbl 0542.68071
[15] R. Dubes, A. K. Jain: CІustering metodology in exploratory data analysis. In: Advances in Computers 19, Academic Press, New York 1980.
[16] R. O. Duda, P. E. Hart: Pattern Classification and Scene Analysis. J. Wiley, New York 1973. Zbl 0277.68056
[17] B. Efron: Bootstrap methods. Another look at the jackknife. Ann. Statist. 7 (1979), 1 - 26. MR 0515681 | Zbl 0406.62024
[18] B. Efron: The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia 1982. MR 0659849 | Zbl 0496.62036
[19] R. A. Fisher: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7 (1936), Part II, 179-188.
[20] R. A. Fisher: Statistical Methods for Research Workers. Hafner, New York 1963.
[21] D. H. Foley: Considerations of sample and feature size: IEEE Trans. Inform. Theory IT-18 (1972), 5, 618-626.
[22] K. S. Fu: Applications of Pattern Recognition (K. S. Fu, ed.). CRC Press 1982.
[23] K. S. Fu: A step towards unification of syntactic and statistical pattern recognition. IEEE Trans. Pattern Anal. Machine Intell. 8, (1986), 398-404. Zbl 0589.68062
[24] K. Fukunaga, R. R. Hayes: Effects of sample size in classifier design. IEEE Trans. Pattern Anal. Machine Intell. 11 (1989), 8, 873-885.
[25] K. Fukunaga, R. R. Hayes: Estimation of classifier performance. IEEE Trans. Pattern Anal. Machine Intell. 11 (1989), 10, 1087-1101.
[26] N. Glick: Sample-based classification procedures derived from density estimators. J. Amer. Statist. Assoc. 67 (1972), 116-122. Zbl 0241.62039
[27] L. F. Gusєman, Jr., H. F. Walker: On minimizing the probability of misclassification for linear feature selection. JSC International Technical Note JSC-08412, Johnson Space Center, Houston, Texas, August 1973.
[28] L. F. Guseman, Jr., H. F. Walker: On Minimizing the Probability of Misclassification for Linear Feature Selection: A Computational Procedure. The Search for Oii. Maгcel Dekker, New York 1975.
[29] L. F. Guseman, Jr. B. C. Peters Jr., H. F. Walker: On minimizing the probability of misclassification for linear feature selection. Ann. Statist. 3 (1975), 661. MR 0370937
[30] D. J. Hand: Recent advances in error rate estimation. Patteгn Recognition Lett. 4 (1986), 335-346.
[31] M. M. Kalayeh, D. A. Landgrebe: Predicting the requirement number of training samples. IEEE Trans. Pattern Anal. Machine Intell. 5 (1983), 664-667.
[32] L. Kanal: Patterns in pattern recognition 1968-1974. IEEE Trans. Infoгm. Theory IT-18 (1974), 618-626. Zbl 0286.68055
[33] L. Kanal, B. Chandrasekar: On dimensionality and sample size in statistical pattern classification. Pattern Recognition 3 (1971), 225-234.
[34] P. A. Lachenbruch: Discriminant Analysis. Hafner Press, London 1975. Zbl 0354.62050
[35] P. A. Lachenbruch, R. M. Mickey: Estimation of error rates in discrimining analysis. Technometrics 70 (1968), 1, 1-11. MR 0223016
[36] P. M. Lewis: The characteristic selection problem in recognition systems. IRE Tгans. Inform. Theory 8 (1962), 171-178. Zbl 0099.34505
[37] W. Malina: On an extended Fisher criterion for feature selection. IEEE Trans. Pattern Anal. Machine Intell. 3 (1981), 611-614.
[38] T. Marill, D. M. Green: On the effectivness of receptors in recognition systems. IEEE Trans. Inform. Theory 9 (1963), 1, 11-17.
[39] P. M. Narendra, K. Fukunaga: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26 (1977), 917-922.
[40] N. J. Nilsson: Learning Machine - Foundations of Trainable Pattern Classifying Systems. McGraw-Hiü, New York 1965.
[41] R. Pecinovský P. Pudil, S. BІáha: The algorithms for sequential feature selection based on the measure of discriminative power. In: Proceedings of DIANA - Conf. on Discr. Anal., Cluster Anal. and Others Methods on Data Class., Liblice, 1982, pp. 277-284.
[42] P. Pudil, S. Bláha: Evaluation of the effectiveness of features selected by the methods of discriminant analysis. Pattern Recognition 14 (1981), Nos. 1 - 6, 81 - 85. MR 0639263
[43] P. Pudil, S. Bláha: A global approach to the solution of situation recognition. In: Fourth Formatoг Symposium on Mathematical Methods for Analysis of Large-Scale Systems, Liblice, May, 1982 (J. Beneš, L. Bakule, eds.). Academia, Praha 1983, pp. 405-418.
[44] P. Pudil S. Bláha, J. Novovičová: PREDITAS - software package for solving pattern recognition and diagnostic problems. In: Pattern Recognition - Proceedings of BPRA 4th Internat. Coлf. on Pattern Recognition, Cambridge 1988 (J. Kittler, ed.). (Lecture Notes in Computer Science 301.) Springer-Verlag Berlin -Heidelberg-New York 1988, pp. 146-152.
[45] P. Pudil S. Bláha, Z. Pertold: Significance analysis of geochemical data for rock type discrimination by means of PREDITAS system (in Czech). In: Proceedings of International Symposium Mathematical Methods in Geology, Příbram 1989, pp. 119-125.
[46] G. Sebestyen: Decision Making Processes in Patteгn Recognition. MacMillan, New York 1962. MR 0156700
[47] G. T. Toussaint: Bibliography on estimation of misclassification. IEEE Trans. Inform. Theory IT-20 (1974), 4, 472-479. MR 0388672 | Zbl 0302.68103
[48] S. Watanabe: Karhunen-Loève expansion and factor analysis. In: Trans. Fourth Prague Conf. on Information Theory, 1965. Academia, Prague 1967, pp. 635-660. MR 0234768
[49] W. G. Wee: Generalized inverse approach to adaptive multiclass pattern classification. IEEE Trans. Comput. 17 (1968), 1157-1164. Zbl 0181.22504
Partner of
EuDML logo