Previous |  Up |  Next

Article

References:
[1] D. Aeyels: Local and global controllability for nonlinear systems. Systems Control Lett. 5 (1984), 19-26. MR 0768710 | Zbl 0552.93009
[2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control. Systems Control Lett. 5 (1985), 289-294. MR 0791542 | Zbl 0569.93056
[3] R. W. Brockett: Feedback invariants for nonlinear systems. In: Proc. of the Vllth IFAC World Congress, Helsinki 1978, pp. 1115-1120.
[4] S. Čelikovský: On the representation of trajectories of bilinear systems and its applications. Kybernetika 23 (1987), 3, 198-213. MR 0900330
[5] S. Čelikovský: On the continuous dependence of trajectories of bilinear systems and its applications. Kybernetika 24 (1988), 4, 278-292. MR 0961561
[6] S. Čelikovský: On the Lipschitzean dependence of trajectories of multi-input time dependent bilinear systems on controls. Problems Control Inform. Theory 17(1988), 4, 231-238. MR 0958030
[7] S. Čelikovský: Topological Hnearization of nonlinear systems: Application to the non-smooth stabilization. In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41 44.
[8] S. Čelikovský: Global linearization of nonlinear systems: A survey. In: Geometry in Nonhnear and Differential Inclusions (Banach Center Publications, Vol. 32), Polish Academy of Sciences, Warszawa 1995. MR 1364424
[9] S. Čelikovský: Numerical algorithm for the nonsmooth stabilization based on topological Hnearization. In: Optimization-Based Computer-Aided Modelling and Design (J. Doležal and J. Fidler, eds.), ÚTIA AV ČR, Prague 1995.
[10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask. In: Proc. of the Conf. Algebraic and Geometric Methods in Nonlinear Control Theory, Paris 1985 (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986. MR 0862326
[11] W. Dayawansa W. M. Boothby, D. L. Elliot: Global state and feedback equivalence of nonlinear systems. Systems Control Lett. 6 (1985), 229-234. MR 0812254
[12] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue. In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), (Lecture Notes in Control Inform. Science 144), Springer-Veilag, New York 1990, pp. 778-787. Zbl 0716.93046
[13] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical systems and Bifurcations of Vector Fields. Springer-Verlag, New York 1986. MR 1139515
[14] R. E. Kalman P. L. Falb, M. A. Arbib: Topics in Mathematical Systems Theory. McGraw-Hill, New York 1969. MR 0255260
[15] M. Kawski: Stabilization of nonlinear systems in the plane. Systems Control Lett. 12 (1989), 169-175. MR 0985567 | Zbl 0666.93103
[16] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems. IEEE Control Systems Magazine, April 1993, 47-57.
[17] W. Respondek: Geometiic methods in linearization of control systems. In: Mathematical Control Theoty, Banach Centei Publications 14 (1985), 453-467. MR 0851243
[18] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 56 (1991), 259-294. MR 1092818 | Zbl 0737.93004
[19] L. A. Zadeh, C. A. Desoer: Linear Systems Theory. McGraw-Hill, New Yoik 1963.
Partner of
EuDML logo