Previous |  Up |  Next

Article

References:
[1] V. A. Trojckij: Variational problems of optimization of control processes. Prikladnaja matematika i mechanika 26 (1962), 1, 29-38. In Russian. MR 0143677
[2] L. T. Fan C. S. Wang: The Discrete Maximum Principle. Wiley, New York 1966. MR 0195614
[3] S. Gonzales A. Miele: Sequential Gradient-Restoration Algorithm for Optimal Control Problems with General Boundary Conditions. Aero-Astronautics Report No. 142, Rice University, Houston 1978.
[4] S. Gonzales A. Miele: Sequential Gradient-Restoration Algorithm for Optimal Control Problems with Nondifferential Constraints and General Boundary Conditions. Aero-Astronautics Report No. 143, Rice University, Houston 1978.
[5] S. Gonzales A. Miele: Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions. J. Optimization Theory and Appl. 26 (1978), 3, 395-425. MR 0524638
[6] J. Fidler J. Doležal: On the Solution of Optimal Control Problems with General Boundary Conditions. Research Report No. 956, Institute of Information Theory and Automation, Prague 1979. In Czech.
[7] J. Doležal P. Černý: The application of optimal control methods to the determination of multifunctional catalysts. 23rd CHISA Conference, Mariánské Lázně 1976. See also: Automatizace 21 (1978), 1,3-8. In Czech.
[8] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear, two-point boundary-value problems. J. Optimization Theory Appl. 5, (1970), 5, 382-399. MR 0266441
[9] J. Doležal: Modified quasilinearization method for the solution of implicite nonlinear two-point boundary-value problems for difference systems. The 5th Symposium on Algorithms "ALGORITHMS' 79", Vysoké Tatry 1979, 259-271. In Czech.
[10] J. Doležal J. Fidler: On the numerical solution of implicite two-point boundary-value problems. Kybernetika 15 (1979), 3, 222-230.
[11] M. R. Hestenes: Calculus of Variations and Optimal Control Theory. Wiley, New York 1966. MR 0203540 | Zbl 0173.35703
[12] A. E. Bryson Y. C. Ho: Applied Optimal Control. Ginn and Company, Waltham, Massachusetts 1969.
[13] A. Miele B. P. Mohanty A. K. Wu: Conversion of Optimal Control Problems with Free Initial State Into Optimal Control Problems with Fixed Initial State. Aero-Astronautics Report No. 130, Rice University, Houston 1976.
[14] J. Doležal: Parameter optimization for two-player zero-sum differential games. Trans. of the ASME, Ser. G., J. Dynamic Systems, Measurement and Control 101 (1979), 4, 345-349. MR 0553273
[15] J. Doležal: Parameter optimization in nonzero-sum differential games. Kybernetika 16 (1980), 1, 54-70. MR 0575417
[16] N. U. Ahmed N. D. Georganas: On optimal parameter selection. IEEE Trans. Automatic Control AC-18 (1973), 3, 313-314. MR 0448207
[17] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods. American Elsevier, New York 1972. MR 0323119
[18] J. Doležal: A gradient-type algorithm for the numerical solution of two-player zero-sum differential games. Kybernetika 14 (1978), 6, 429-446. MR 0529195
[19] P. Černý: Digital Simulation Program for the Solution of Two-Point Boundary-Value Problems. Research Report No. 639, Institute of Information Theory and Automation, Prague 1975. In Czech.
Partner of
EuDML logo